ASSET MANAGEMENT / CERTIFICATION

. SERVICES

GEO ESTING

GEOTECHNICAL INVESTIGATION DOGWOOD ROAD BRIDGE REPLACEMENT PROJECT IMPERIAL COUNTY, CALIFORNIA

N|V|5

September 30, 2016 Revised July 25, 2017

NV5 West, Inc. 15092 Avenue of Science, Suite 200 San Diego, California 92128 (858) 715-5800 www.NV5.com

A NV5 Company – Offices Nationwide

Geotechnical Investigation

Dogwood Road Bridge Replacement Project Imperial County, California

Prepared for:

County of Imperial Department of Public Works 155 S. 11th Street El Centro, California 92243

Attention: Mr. William Brunet, Director of Public Works

Project No.: 226816-00103.02

September 30, 2016 Revised July 25, 2017

> NV5 West, Inc. 10592 Avenue of Science, Suite 200 San Diego, CA 92128

NIV|5

County of Imperial

Department of Public Works 155 S. 11th Street El Centro, California 92243 September 30, 2016 Project No.: 226816-00103.02

Attention:	Mr. William Brunet, Director of Public Works
Subject:	Geotechnical Investigation
Project:	Dogwood Road Bridge Replacement Project Imperial County, California

Dear Mr. Brunet:

As requested, NV5 West, Inc. (NV5) is pleased to submit the results of our geotechnical investigation for the proposed Dogwood Road bridge replacement project in Imperial County, California. The purpose of this investigation was to evaluate the subsurface conditions at the bridge and approach areas and to provide geotechnical recommendations pertaining to the design and construction of the replacement bridge. The accompanying report includes a discussion of the subsurface soil conditions observed during our study, a review of available relevant geotechnical documents and geotechnical engineering analyses. Based on the results of the subsurface exploration, subsequent testing of the retrieved soil samples, and engineering analyses, it was concluded that the construction of the proposed project is geotechnically feasible provided the recommendations contained herein are appropriately incorporated into the design and implemented during construction.

It is recommended that the forthcoming project specifications, be reviewed by NV5 for consistency with the report prior to the bid process in order to avoid possible conflicts, misinterpretations, and inadvertent omissions, etc. It should also be noted that the applicability and final evaluation of recommendations presented herein are contingent upon construction phase field monitoring by NV5 in light of the widely acknowledged importance of geotechnical consultant continuity through the various design, planning and construction stages of a project.

NV5 appreciates the opportunity to provide this geotechnical engineering service for this project and looks forward to continuing our role as your geotechnical engineering consultant. Respectfully submitted,

NV5 West, Inc.

Gene Custenborder, CEG 1319 Senior Engineering Geologist

Reviewed by,

Guillaume Gau, GE 2986 Senior Vice President

GC/SK/GG:ma

CERTIFIED

GEOLOGIST

Qt P11.30.16

Sam Koohi, PhD, PE 85010 Engineering Manager

Dogwood Rd Bridge GI.docx Distribution: (1) Addressee, via email

TABLE OF CONTENTS

		Page
1.0 IN	TRODUCTION	1
1.1	PROJECT DESCRIPTION	1
1.2	PURPOSE AND SCOPE OF INVESTIGATION	1
1.3	SITE DESCRIPTION	2
2.0 FI	ELD EXPLORATION PROGRAM	
3.0 LA	ABORATORY SOIL TESTING	4
4.0 GE	EOLOGY	4
4.1	GEOLOGIC SETTING	4
4.2	GEOLOGIC MATERIALS	4
4.3	GROUNDWATER	5
5.0 SE	EISMIC AND GEOTECHNICAL HAZARDS	5
5.1	Faults	5
5.2	GROUND SHAKING	6
5.3	LIQUEFACTION AND DYNAMIC SETTLEMENT	6
5.4	SLOPE STABILITY AND LANDSLIDES	7
5.5	TSUNAMI AND SEICHES	7
5.6	SUBSIDENCE	
6.0 DE	ESIGN RECOMMENDATIONS	8
6.1	GENERAL	
6.2	FOUNDATION RECOMMENDATIONS	
6.3	APPROACH FILL EARTHWORK	
6.4	TEMPORARY EXCAVATIONS	11
6.5	SEISMIC DESIGN	
6.6	RETAINING WALL DESIGN	
6.7	PAVEMENT RECOMMENDATIONS	
6.7	SOIL CORROSION	
6.8	BACKFILL	16
7.0 DE	ESIGN REVIEW AND CONSTRUCTION MONITORING	16
7.1	PLANS AND SPECIFICATIONS	17
7.2	CONSTRUCTION MONITORING	17
8.0 LI	MITATIONS	17
9.0 SE	ELECTED REFERENCES	

Figures

FIGURE 1 – SITE LOCATION MAP FIGURE 2 – GEOTECHNICAL MAP FIGURE 3 – REGIONAL GEOLOGIC MAP FIGURE 4 – REGIONAL FAULT MAP FIGURE 5 – ARS CURVE

APPENDICES

- APPENDIX A EXPLORATORY BORING LOGS
- APPENDIX B LOG OF TEST BORING SHEETS
- APPENDIX C Laboratory Test Results
- APPENDIX D PILE DESIGN
- APPENDIX E LIQUEFACTION ANALYSIS
- $\label{eq:appendix} Appendix \ F-ASFE \ \ Important \ Information \ About \ Your \ Geotechnical$
 - ENGINEERING REPORT

1.0 INTRODUCTION

This report presents the results of our geotechnical investigation conducted for the Dogwood Road Bridge replacement project in Imperial County, California. Included in this report is a summary of the data collected along with our findings, conclusions and geotechnical design recommendations for the project. This report has been prepared for the exclusive use of the client and their consultants in the design of the proposed project. In particular, it should be noted that this report should be considered by prospective construction bidders only as a source of general information, subject to interpretation and refinement by their own expertise and experience; particularly with regard to construction feasibility. Contract requirements set forth by the project plans and specifications will supersede any general observations and specific recommendations presented in this report.

1.1 Project Description

The Dogwood Road Bridge replacement project will replace the existing Dogwood Road Bridge across the Central Main Canal in Imperial County, California. We understand that the existing bridge, (BR. No. 58C-0042), was built in 1967. It is a three-span reinforced concrete slab with a total length of 82 feet. The superstructure consists of a concrete slab with integral caps at the bents. The substructure consists of diaphragm type abutments supported on driven piles. The bents also consist of driven pile extensions. The existing bridge has been affected by soil subsidence which has resulted in the loss of freeboard and the accumulation of debris at the upstream end of the bridge, causing a waterway restriction and the potential for future immersion.

Based on preliminary design information provided by NV5 Infrastructure, it is understood that the proposed new bridge will be a two-span structure approximately 91.5 feet in length, which will span the waterway with a mid-span pier within the canal. The bridge will be built from precast-prestressed voided slab girders with a reinforced cast-in-place composite concrete deck and a pier and abutments supported on cast-in-steel-shell (CISS) piles. It is anticipated that the new roadway profile will be raised 4 feet 2 inches over the current roadway. The locations of the project site in relation to surrounding streets and landmarks is presented on *Figure 1, Site Location Map*.

1.2 Purpose and Scope of Investigation

The purpose of the geotechnical investigation was to evaluate the subsurface conditions at the proposed bridge site and to provide geotechnical recommendations and parameters for the design and construction of the proposed replacement bridge. The scope of services for this project included the following tasks:

- Review of readily available background data, including in-house geotechnical data, in-house geotechnical reports, published geologic maps, topographic maps, seismic hazard maps and literature relevant to the subject site.
- Performing a site reconnaissance to observe the general surficial site conditions, check for accessibility, and select the exploratory boring locations.

- Coordinating with entities having an interest in the field exploration activities including the design team, the exploration subcontractor, Underground Service Alert and agencies associated with one-call notification.
- Conducting a subsurface investigation which included drilling four borings to a maximum depth of approximately 71.5 feet below the existing grade (see *Appendix A*).
- Performing laboratory testing on selected representative bulk and relatively undisturbed soil samples obtained during the field exploration program to evaluate the geotechnical engineering properties of these materials (see *Appendix B*).
- Performing an assessment of general seismic conditions and geotechnical hazards affecting the area and potential impacts on the subject project.
- Engineering evaluation of the data collected to develop geotechnical design parameters and recommendations for the proposed construction.
- Preparation of this report including reference maps and graphics, presenting our findings, conclusions and geotechnical design recommendations specifically addressing the following items:
 - Evaluation of general subsurface conditions and description of types, distribution, and engineering characteristics of subsurface materials.
 - Evaluation of project feasibility including excavatability, trench stability, and suitability of on-site soils for backfill.
 - Recommendations including site earthwork, foundation design and other geotechnical parameters to be used for the design of the project.
 - General construction considerations for the project.

1.3 Site Description

The project site is located north of the intersection of South Dogwood Road and Willoughby Road over the Central Main Canal in Imperial County, California. Dogwood Road is a heavily traveled north/south roadway that parallels highway 111 to the east. The bridge crosses the Central Main Canal perpendicularly. The earthen channel is unlined with side slopes inclined at approximately 2 to 1 (horizontal to vertical). The terrain at and around the bridge site is relatively flat except for the embankments on the various irrigation canals in the area. The existing bridge deck is currently at an elevation of approximately 4 feet below mean sea level.

The area around the site is generally agricultural. A solar generating plant (Ormat Nevada, Inc.), and a construction and aggregate production yard (Pyramid Construction and Aggregates, Inc.) are located on the west side of Dogwood Road just north of the bridge site. Existing improvements in the vicinity of the project include several unlined canals and drainages, various underground pipelines and overhead utilities.

2.0 FIELD EXPLORATION PROGRAM

Before starting our field exploration program, a field reconnaissance was conducted to observe site conditions and mark the location of our planned explorations. In accordance with state law, Underground Service Alert was notified of our operations for underground utility marking at the locations of exploration prior to excavation.

On March 24rd and 25th, 2016, four exploratory borings were drilled at the project site. The exploratory borings were drilled with a hollow stem auger drill rig to a maximum depth of approximately 71.5 feet below the existing ground surface. The borings were logged by an NV5 engineer and representative soil samples encountered were obtained for visual soils classification and laboratory testing. The soil conditions encountered in the borings were visually examined, classified, and logged in general accordance with the Unified Soil Classification System. The logs of the exploratory test borings are presented in *Appendix A, Exploratory Boring Logs*. The approximate locations of the borings are shown on *Figure 2, Geotechnical Map. The Log of Test Boring Sheets* are included as *Appendix B*.

Bulk and relatively undisturbed drive samples of the soils encountered in the borings were obtained in the field during our subsurface evaluation. The samples were tagged in the field and transported to our laboratory for observation and testing. The drive samples were obtained using the California Modified Split Spoon and Standard Penetration Test (SPT) samplers, as described below.

California Modified Split Spoon Sampler

The split barrel drive sampler was driven with a 140-pound hammer allowed to drop freely 30 inches in general accordance with ASTM D1587. The number of blows for the last two of three 6-inch intervals were recorded during sampling and are presented in the logs of borings. The sampler has external and internal diameters of approximately 3.0 and 2.4 inches, respectively, and the inside of the sampler is lined with 1-inch-long brass rings. The relatively undisturbed soil samples within the rings were removed, sealed, and transported to the laboratory for observation and testing.

Standard Penetration Test (SPT) Sampler

A split barrel sampler was driven with a 140-pound hammer allowed to drop freely 30 inches in general accordance with ASTM D1586. The numbers of blows for the last two of three 6-inch intervals were recorded during sampling and are presented in the logs of borings (i.e., N-value). The sampler has external and internal diameters of 2.0 and 1.5 inches, respectively. The soil samples obtained in the interior of the barrel were measured, removed, sealed and transported to the laboratory for observation and testing.

3.0 LABORATORY SOIL TESTING

Laboratory testing was performed on selected representative bulk and relatively undisturbed soil samples obtained from the exploratory borings to aid in the material classifications and to evaluate engineering properties of the materials encountered. The following tests were performed:

- In-situ density and moisture content (ASTM D2937 and ASTM D2216).
- Particle size analyses and No. 200-wash (ASTM D422 and ASTM D1140).
- Hydrometer Analysis (ASTM D4221)
- Expansion Index (ASTM D4829).
- R-Value (ASTM D2844)
- Atterberg Limits (ASTM D4318).
- Direct Shear (ASTM D3080).
- Maximum Density-Optimum Moisture Content (ASTM D1557).
- Corrosivity series including sulfate content, chloride content, pH-value, and resistivity (CTM 417, 422, and 532/643).

Testing was performed in general accordance with applicable ASTM standards and California Test Methods. A summary of the laboratory testing program and the laboratory test results are presented in *Appendix C, Laboratory Test Results*.

4.0 GEOLOGY

4.1 Geologic Setting

The project site is located in Imperial County within the Colorado Desert geomorphic province. This province is a low-lying barren desert basin (in part about 245 feet below sea level) dominated by the Salton Sea. The province is a depressed block between active branches of the San Andreas fault system. The fault branches are buried by recent alluvial deposits. The dominant structural features related to the San Andreas fault system consist of northwest-trending faults and fault zones. The major northwest-trending fault zones include the Imperial fault, the Superstition Hills fault, the Elsinore fault and the San Andreas fault. The province is characterized by the ancient beach lines and silt deposits of extinct Lake Cahuilla.

4.2 Geologic Materials

Geologic units encountered in the subsurface exploration consisted natural deposits mapped as Quaternary Lake Deposits (Ql) on published geologic maps. *Figure 3, Regional Geologic Map,* shows the geology of the site area based on published geologic mapping. The natural deposits generally consisted of tan to red-brown to dark brown, moist to wet, medium stiff to stiff, silty to sandy clay sand with moderate to high plasticity, and brown, wet to saturated, loose to medium dense sand to clayey sand. Minor, locally derived fill soils, associated with construction of the roadways and canals are also present. Descriptions of the materials encountered are also presented on the *Logs of Exploratory Borings in Appendix A*, and the *Log of Test boring Sheets in Appendix B*.

4.3 Groundwater

Groundwater was encountered in borings B-2 at a depth of approximately five feet below the existing ground surface and in B-3 at a depth of approximately ten feet below the existing ground surface (approximate elevation nine and 14 feet below mean sea level, respectively). Groundwater levels are also indicated on the *Log of Test Boring Sheets in Appendix B*. Groundwater was not encountered in borings B-1 located northerly of the bridge site and B-4 located southerly of the site. Groundwater conditions can be expected to vary due to seasonal precipitation, irrigation, and other factors.

5.0 SEISMIC AND GEOTECHNICAL HAZARDS

The findings of our seismic and geotechnical hazards evaluation for the proposed project are summarized in the sections below.

5.1 Faults

The numerous faults in southern California include active, potentially active, and inactive faults. As used in this report, the definitions of fault terms are based on those developed for the Alquist-Priolo Special Studies Zones Act of 1972 and published by the California Division of Mines and Geology (Hart and Bryant, 1997).

Active faults are defined as those that have experienced surface displacement within Holocene time (approximately the last 11,000 years) and/or have been included within any of the state-designated Earthquake Fault Zones (previously known as Alquist-Priolo Special Studies Zones). Faults are considered potentially active if they exhibit evidence of surface displacement since the beginning of Quaternary time (approximately two million years ago) but not since the beginning of Holocene time. Inactive faults are those that have not had surface movement since the beginning of Quaternary time.

Review of geologic maps and literature pertaining to the general site area indicates that the site is not located within an Earthquake Fault Zone delineated by the State of California for the hazard of fault surface rupture. In addition, there are no known major or active faults mapped or known to cross or trend toward the project site. Evidence of active faulting was not encountered during our field investigation or in our research of available published geologic maps. Therefore, the potential for damage due to surface rupture of faults at the project site is considered low during the design life of the proposed project.

5.1.1 Active Faults

The closest known active faults to the site are the Cerro Prieto fault and the Imperial fault, located approximately 6.1 miles southwest and 6.9 miles northeast of the project site, respectively. Other important active faults that could affect the project area and their distance to the site are included in included in the following *Table 1. Figure 4, Regional Fault Map*, depicts the site in relation to known active faults in the region.

Fault	Approximate Distance From Site					
Cerro Prieto	6.1 miles					
Imperial fault	6.9 miles					
Brawley fault	8.9 miles					
Superstition Hills fault	9.4 miles					
San Jacinto fault	15.4 miles					
Laguna Salada fault	15.7 miles					
Elsinore fault	28.0 miles					
San Andreas fault	45.4 miles					

Table 1Distance From the site to Known Active Faults

5.2 Ground Shaking

Although the site could be subjected to strong ground shaking in the event of an earthquake, this hazard is common in California and the effects of ground shaking can be attenuated if the improvements are designed and constructed in conformance with current building codes and engineering practices (see *Section 6.5, Seismic Design*).

5.3 Liquefaction and Dynamic Settlement

Liquefaction and dynamic settlement of soils can be caused by ground shaking during earthquakes. Research and historical data indicate that loose, relatively clean granular soils are susceptible to liquefaction and dynamic settlement, whereas the stability of the majority of clayey silts, silty clays and clays is not adversely affected by ground shaking. Liquefaction is generally known to occur in saturated loose cohesionless soils at depths shallower than approximately 50 feet. The potential for liquefaction under the same conditions of ground shaking intensity and duration will decrease for sands that are more well graded, more irregular and gritty, coarser and denser. Also, a pronounced decrease in liquefaction potential will occur with the increase in fine-grained (i.e., silt and clay) content. Idriss and Boulanger (2008, 2014) suggested that if the plasticity index of the soil is greater than 7, the soil can be considered non-liquefiable. Dynamic settlement due to earthquake shaking can occur in both dry and saturated sands. The potential consequences of liquefaction to engineered structures include loss of bearing capacity, buoyancy forces on underground structures (including pipelines), increased lateral earth pressures on retaining walls, and lateral spreading.

The proposed bridge will be located within the poorly to moderately consolidated alluvial materials. The subsurface exploration program encountered loose to medium dense alluvial sand with varying contents of clay and silt, along with a shallow ground water table. The alluvial sands were encountered between approximately 35 feet to 50 feet below existing grade.

Liquefaction analyses were performed using the program SPTLIQ (InfraGEO Software, 2017). The proposed procedure by Boulanger and Idriss (2014) was used, which consists of comparing a Cyclic Stress Ratio (CSR, earthquake "load") to the Cyclic Resistance Ratio (CRR, soil "strength") of the soil. The CRR calculations were based upon input data obtained from the test borings. All of the potential liquefaction induced settlements were performed using the method proposed by Idriss and Boulanger (2008) method.

Liquefaction analyses were performed utilizing the field and laboratory test data. A design peak ground acceleration (PGA) value of 0.65g and a modal earthquake moment magnitude of Mw=6.7 was used based on the results of seismic deaggregation of the site, The groundwater level (GWL) utilized in the analyses was 5 feet below existing grade. Appendix E, Liquefaction Analyses Results, contains the input data file and a graphical output identifying the potentially liquefiable zones.

Based on our analysis, it is estimated that up to 1.6 inches of total seismic settlement could occur within the bridge footprint for the design-event earthquake. In addition, differential settlements up to 0.8 inch could be expected. In summary, the analyses indicate that there is a potential for liquefaction, seismically-induced settlement and associated ground damage for the design-event earthquake. Foundation recommendations to address the liquefaction potential are included in Section 6.2.

5.4 Slope Stability and Landslides

There are no high or steep slopes on or in close proximity to the project site. Based on the investigation, there appears to be no indications of landslides or deep-seated instability at the site.

5.5 Tsunami and Seiches

Although the site and surrounding areas are at an elevation approximately at or several feet below mean sea level, the site is approximately 80 miles from the Sea of Cortez, the closest sea to the site. Due to the distance, tsunamis (seismic sea waves) are not considered a hazard at the site.

The site is not located near to or downslope of, any large body of water that could affect the site in the event of an earthquake-induced failure or seiche (oscillation in a body of water due to earthquake shaking). The Salton Sea is located approximately 28.6 miles north of the site and is therefore not considered a hazard to the site in terms of a seismically induced seiche.

5.6 Subsidence

The site is located in an area with documented ground subsidence. According to an evaluation report for the Dogwood Road Bridge (NV5, 2015), the existing bridge structure had over 24 inches of freeboard when it was first built in 1967. According to survey data provided by the County of Imperial and the Imperial Irrigation District (IID), the structure appears to have settled about 23 inches since 1981. The subsidence data was collected through surveys from 1981 to 2012. The report concluded that the subsidence is due to withdrawal of groundwater. Typically soil subsidence occurs when groundwater (near the surface or in a deep aquifer) is lowered past its historical level. This occurrence results in an increase of effective stress within a soil layer which typically translates into additional soil consolidation. The report also concluded that the subsidence is likely to continue at an average rate of 0.72 inches per year. The recommended proposed foundation system cannot be designed to mitigate the on-going soil subsidence.

6.0 DESIGN RECOMMENDATIONS

6.1 General

Based on the results of the field exploration and engineering analyses, it is NV5's opinion that the proposed Dogwood Road Bridge Replacement is feasible from a geotechnical standpoint, provided the recommendations in this report are incorporated into the design plans and implemented during construction. The following sections present detailed recommendations and parameters pertaining to the geotechnical engineering design for this project.

6.2 Foundation Recommendations

Based on the results of our investigation, Cast-In-Steel-Shell (CISS) piles are recommended for foundation support of the proposed Dogwood Road Bridge replacement. CISS piles are recommended to reduce the potential for construction difficulties due to caving of the loose sandy layers and to withstand the large lateral loads due to potential extreme events. Detailed recommendations including vertical pile tip elevations, lateral capacity, estimated settlement, pile design and construction considerations, and embankment recommendations are provided in the following sections of the report.

6.2.1 Vertical Design and Pile Tip Elevations

The anticipated pile diameters and structural loads of the CISS piles at the abutments and piers were provided by the structural engineer and are summarized in Appendix D in Table D-1.

The ultimate axial capacity for 30-inch diameter CISS piles in both compression and tension for the provided load cases were computed using the static method of analysis using the computer program AXIALCAP (InfraGEO Software, 2017). The axial capacity, in both compression and tension, for 30-inch diameter CISS piles were calculated using the method proposed by NAVFAC 7.02 manual (1986).

The results of liquefaction analysis are presented in Appendix E. Based on the analysis, a medium dense sandy layer from 35 to 40 feet below existing ground was identified as liquefiable during a design seismic event with a total seismic settlement potential of 1.6 inches. Therefore, we have taken into account in our analysis the potential for occurrence of downdrag forces on the piles due to liquefaction.

The specified tip elevations for abutment and pier piles in both static and extreme events for compression, uplift and lateral loads are presented in Appendix D in Table D-1. We use a factor of safety of 2.0 for skin friction for static (service loading) case and 1.0 for seismic case including the effects of liquefaction. We neglected end bearing in our analysis because the movement associated with mobilizing the end bearing is typically beyond tolerable structural limits. The axial pile capacity curves versus embedment are presented in Appendix D.

6.2.2 Lateral Capacity

It is our understanding that the structural engineer will use the computer program LPILE to perform pushover analyses and determine the depth of fixity of the proposed CISS piles. We have estimated the relevant geotechnical input parameters for LPILE based on the current investigation. The recommended geotechnical input parameters for LPILE are presented in Table 2.

Elevation (feet)	Soil Type	P-Y Model	Unit Weight(pcf)	ф (deg)	C (psf)	K (pci)	ε ₅₀ (in/in)
El. 996.85- El. 995.00(above water table)	Clay	Soft Clay	120	0	200	-	0.02
El. 995.00- El. 991.85 (below water table)	Clay	Soft Clay	57.6	0	200	-	0.02
El. 991.85- El. 966.85	Clay	Soft Clay	57.6	0	500	-	0.02
El. 966.85- El. 946.85 (use p-multiplier=0.1 for extreme event)	Sand	API Sand	57.6	32	0	40	-
El. 946.85- El. 926.85	Sand	API Sand	57.6	34	0	60	-

Table 2
Recommended Soil Parameters for LPILE

6.2.3 Estimated Settlement

We estimate the settlement of the proposed bridge supported on CISS piles in the manner recommended to be less than 0.5 inch. A detailed settlement analysis for deep foundations was beyond the scope of this study. We would be pleased to perform a detailed settlement analysis on a case-by-case basis, if requested.

6.2.4 CISS Pile Design and Construction Considerations

Caltrans standard specifications and special provisions for "Cast-in-Steel-Shell (CISS) Piling" should apply for construction of the CISS piles. Groundwater is expected during pile construction. The design groundwater level is at 5 feet below the existing surface. However, at the time of construction, the groundwater elevation may be different due to seasonal fluctuations or other conditions.

If the composite section action is used in the analysis, the design engineer must assure that a reliable bond exists between the casing and concrete. Welded studs or shear rings may be required, especially for large diameter piles.

Open ended or closed ended pipes can be used as casing for CISS piles. The close ended piles are more difficult to drive in very dense granular soils, very hard cohesive soils or soft rock. Generally, pipe piles up to 400 mm in diameter will be plugged during driving while diameters 600 mm and greater will not be plugged. After the pipe is plugged, an open-ended pipe behaves like a displacement pile and driving becomes more difficult. The Geotechnical Engineer may recommend center relief drilling against excessive blow counts or high driving stresses to reach the planned tip elevation. A drivability analyses can be performed to calculate the pile driving stresses and check the required thickness of the pipe.

For open ended piles a plug two diameters in length can usually seal the bottom of the pile, but a seal course may be required for some combinations of high water pressure and sandy soils.

6.3 Approach Fill Earthwork

The preliminary project plans indicate up to approximately 6 feet of fill is planned at the approach to the two abutments. We do not anticipate fill settlement issue at the abutments provided that the embankments are constructed and compacted according to Caltrans specifications. The portion of abutment inside the channel is proposed at a gradient of 2 to 1 (horizontal to vertical) and should be constructed in accordance with Caltrans specifications.

The entire footprint of areas to receive new fill shall be cleared and grubbed of any vegetation. Any loose soils or undocumented fill should be removed and stockpiled for re-use as compacted fill. Excavations in the onsite soils can be accomplished by conventional heavy-duty excavating equipment in good operating condition. After clearing/grubbing and removal of any loose soils or

undocumented fill, the subgrade shall be proof-rolled with loaded heavy equipment under the observation of competent geotechnical personnel. If loose, soft, or pumping areas are observed additional excavation shall be performed as recommended by the geotechnical professional.

If proof rolling is successful, the subgrade shall be scarified and recompacted. Abutment wall backfill shall conform to Caltrans Standard Specifications for structural fill. All earthwork and grading should conform to Sections 16 through 22 of the current edition of Caltrans Standard Specifications. All new fill placed within 150 feet of the abutments should have a relative compaction of 95 percent (based on ASTM D1557) and an expansion index (EI) of less than 50. Positive surface drainage away from foundation areas should be maintained.

6.4 Temporary Excavations

Temporary, shallow excavations with vertical side slopes less than 4 feet high will generally be stable, although there is a potential for localized sloughing; in these soil types vertical excavations greater than 4 feet high should not be attempted without proper shoring to prevent local instabilities. Shoring may be accomplished with hydraulic shores and trench plates, and/or trench boxes, soldier piles and lagging. The actual method of a shoring system should be provided and by a contractor experienced in installing temporary shoring under similar soil conditions and designed by an experienced licensed professional. If soldier piles and lagging are to be used, we should be contacted for additional recommendations.

All trench excavations and access pits should be shored in accordance with CalOSHA regulations. For your planning purposes, the native soil materials may be considered a Type C, as defined the current CalOSHA soil classification.

The excavation support system should be designed to resist lateral earth pressures of the soil and hydrostatic pressures. It is common practice for an experienced contractor to design and install shoring structure. The preliminary shoring design parameters are provided as follows for reference. The final design of the temporary shoring should be reviewed by the project geotechnical engineer.

For the design of a cantilever soldier piles and lagging shoring system the structure should be designed to resist the lateral earth, water, and surcharge loadings. For the subsurface conditions at this site, the unfactored earth pressure distribution (p in psf) can be calculated as follows:

$$P = K.\gamma.H + Surcharge 1$$

Where

H= height of the excavation

 γ = soil unit weight, where for above water ground is 120 pcf, and for below water level is γ' =58 pcf

 K_0 =0.5 At rest earth pressures should be assumed for the geotechnical design, where the wall support does not allow lateral displacement

 $K_a=0.3$ active earth pressure should be assumed for the geotechnical design, where the wall support allow for lateral yielding

Surcharge 1: The surcharge for typical construction activities, a minimum of 2 feet equivalent soil surcharge is recommended

Hydrostatic pressures acting below the groundwater table should be considered in shoring designs.

Stockpiled (excavated) materials should be placed no closer to the edge of a trench excavation than a distance defined by a line drawn upward from the bottom of the trench at an inclination of 1(H): 1(V), but no closer than 4 feet. All trench excavations should be made in accordance with CalOSHA requirements.

6.5 Seismic Design

Seismic design parameters were developed as per the guidelines outlined in the 2012 IBC (2013 CBC) and ASCE 7-10 (W/March 2013 errata) Standard. NV5 should be contacted to provide revisions to these parameters if other codes are specified. The seismic design parameters for Site Class "D" and Risk Category IV (essential facilities) were developed using a JAVA TM application, Java Ground Motion Parameter Calculator–Version 5.0.9 available on the USGS website (http://earthquake.usgs.gov) and Caltrans ARS Online (v2.3.07). The preliminary seismic design parameters for the project site are presented in the following Table 3.

Table 3
2012 IBC (2013 CBC) Seismic Design Parameters
And ASCE 7-10 Standard and Caltrans ARS Online (v2.3.07)

Parameter	Value
Site Class; (Table 1613.3.2)	D
Maximum Magnitude (MMax)	6.7
Shear Wave Velocity, V _{s30} (m/s)	270
Peak Ground Acceleration (PGA)	0.65g

The values for the envelope of the spectral response based on ARS Online Version 2.3.07 (March 2016) are presented in the following Table 4. The spectral acceleration curve for the envelope is presented in Figure 5.

Period (sec)	SA
0.01	0.652
0.05	0.978
0.1	1.164
0.15	1.334
0.2	1.470
0.25	1.465
0.3	1.462
0.4	1.365
0.5	1.294
0.6	1.225
0.7	1.175
0.85	1.090
1	1.018
1.2	0.863
1.5	0.705
2	0.543
3	0.333
4	0.235
5	0.188

 Table 4

 Spectral Envelope Values Based on Caltrans ARS Online (v2.3.07)

6.6 Retaining Wall Design

Conventional cantilever retaining walls backfilled with compacted non-expansive granular soil may be designed for active pressures of 36 pcf of equivalent fluid weight for well-drained, level backfill. For at rest (restrained condition), an equivalent fluid pressure of 55 pcf may be used in design. For seismic design consideration, an equivalent fluid pressure of 12 pcf with an inverted triangular distribution may be used. This value is in addition to the static pressure. A passive pressure of 400 psf per foot of depth is recommended.

Retaining wall backfill should be free draining, non-expansive material compacted at near optimum moisture conditions to at least 90% of maximum dry density as determined by ASTM D 1557.

Lateral earth pressure to be resisted by the retaining walls or similar structures should be increased to allow for surcharge loads. The surcharge considered should include the loads from any structures traffic or other temporary loads that would influence wall design.

A backdrain or an equivalent system of backfill drainage should be incorporated into retaining wall design. Backfill immediately behind retaining structures should be a free-draining granular material a minimum of 1 foot thick and extending to within 12 inches of the top of the backfill. The granular backfill should be capped with about 12 inches of on-site soils. Efflorescence on the face of walls can be mitigated by water proofing which, if done, should be according to the Architect or Civil Engineer's recommendations. Surface runoff should be directed away from the retaining wall and backfill and towards a suitable drainage disposal system.

Compaction on the uphill side of walls within a horizontal distance equal to one wall height should be performed by hand-operated or other lightweight compaction equipment. This is intended to reduce potential "locked-in" lateral pressures caused by compaction with heavy grading equipment.

6.7 Pavement Recommendations

Preliminary pavement sections were developed for the project based on laboratory R-value tests performed on near surface soil samples. Laboratory testing indicated R-values of 5 and 8 for the near-surface soils (Appendix C). Various pavement sections were calculated using an R-value of 5 and assumed traffic indices ranging from 6.0 to 12.0. The project Civil Engineer should select the appropriate pavement section based on the anticipated traffic loads. NV5 can provide alternate sections based on other traffic loadings, if requested. Based on these design parameters, analysis in general accordance with the current Cal-Trans Highway Design Manual, and assuming compliance with site preparation recommendations, NV5 recommends the pavement structural sections in the following Table 5:

	Pavement Section			
Traffic Index (TI)	AC ⁽¹⁾ (inches)	AB ⁽²⁾ (inches)		
6.0	4.0	13.0		
8.0	5.0	18.0		
10.0	6.0	24.0		
12.0	7.5	30.0		

Flexible Asphalt Pavement Sections

(1) Asphalt Concrete;

 (2) Crushed Aggregate Base (CAB), Green Book section 200-2.2, compacted to at least 95% relative compaction (ASTM D-1557);

Note: The upper 12-inches of subgrade soils should be compacted to at least 95% relative compaction (ASTM D-1557).

It is recommended that R-value testing be performed on representative soil samples after rough grading operations on the upper 2 feet to confirm applicability of the above pavement sections.

The aggregate base should conform to the Crushed Aggregate Base per Greenbook requirements, Section 200-2.2. The base course should be compacted to a minimum dry density of 95% of the materials maximum density as determined by the ASTM D1557 test procedure. Field testing should be used to verify compaction, aggregate gradation, and compacted thickness.

The asphalt concrete pavement should be compacted to 95% of the unit weight as tested in accordance with the Hveem procedure. The maximum lift thickness should be two inches. The asphalt concrete material shall conform to Type III, Class C2 or C3, 2009 edition of the Greenbook Standard Specifications for Public Works Construction. An approved mix design should be submitted 30 days prior to placement. The mix design should include proportions of materials, maximum density and required lay-down temperature range. Field testing should be used to verify oil content, aggregate gradation, compacted thickness, and lay-down temperature.

If the paved areas are to be used during construction, or if the type and frequency of traffic is greater than assumed in the design, the pavement section should be re-evaluated for the anticipated traffic.

The aggregate base should be compacted to a minimum dry density of 95% of the materials maximum density as determined by the ASTM D1557 test procedure. Field testing should be used to verify compaction, aggregate gradation, and compacted thickness.

6.7 Soil Corrosion

Caltrans Corrosion Guidelines (version 2.0, November 2012) define a corrosive area as an area where the soil contains more than 500 ppm of chlorides, more than 2,000 ppm of sulfates or has a pH of less than 5.5. Laboratory testing was performed on a representative sample of the on-site

soils to evaluate chloride and sulfate content as well as pH and minimum resistivity. Table 6 presents the results of the corrosivity testing.

Boring No.	Depth (feet)	рН	Resistivity (ohm-cm)	Chloride Content (ppm)	Sulfate Content (ppm)
B-3	10-11.5	8.7	900	32	170

Table 6Corrosion Test Data

The onsite soils do not classify as corrosive in accordance with Caltrans criterial. It is our recommendation that a corrosion specialist be consulted to evaluate the need for corrosion protection mitigation.

6.8 Backfill

The on-site silt and clay soil may not be suitable for backfill of trenches or buried structures. The on-site sandy soils may be used for backfill provided they are free of any contaminated soil, debris, organic matter, or other deleterious materials. Any rock or other soil fragments greater than 3 inches in size should not be used in backfill. All imported backfill, if any, should consist of granular, non-expansive soil with an Expansion Index of 20 or less. Import material should be evaluated by our firm prior to transport to the site and not contain any contaminated soil, expansive soil, debris, organic matter, or other deleterious materials.

The moisture content of the backfill should be maintained within 2% of optimum moisture content during compaction, and backfill should be placed in loose horizontal lifts not more than 8 inches in loose thickness and compacted to at least 90 percent of the maximum dry density as evaluated by the latest version of ASTM D1557. Backfill should be mechanically compacted. Flooding or jetting is not recommended.

7.0 DESIGN REVIEW AND CONSTRUCTION MONITORING

Geotechnical review of plans and specifications is of paramount importance in engineering practice. The poor performance of many structures has been attributed to inadequate geotechnical review of construction documents. Additionally, observation and testing of the subgrade will be important to the performance of the proposed improvements. The following sections present our recommendations relative to the review of construction documents and the monitoring of construction activities.

7.1 Plans and Specifications

The design plans and specifications should be reviewed and approved by NV5 prior to bidding and construction, as the geotechnical recommendations may need to be reevaluated in the light of the actual design configuration. This review is necessary to evaluate whether the recommendations contained in this report and future reports have been properly incorporated into the project plans and specifications.

7.2 Construction Monitoring

Site preparation, removal of unsuitable soils, assessment of imported fill materials, fill placement, and other earthwork operations should be observed and tested. The substrata exposed during the construction may differ from that encountered in the test borings. Continuous observation by a representative of NV5 during construction allows for evaluation of the soil/rock conditions as they are encountered, and allows the opportunity to recommend appropriate revisions where necessary.

8.0 LIMITATIONS

The recommendations and opinions expressed in this report are based on NV5's review of background documents and on information developed during this study. It should be noted that this study did not evaluate the possible presence of hazardous materials on any portion of the site. More detailed limitations of the supplemental geotechnical study are presented in the ASFE's information bulletin in *Appendix F*.

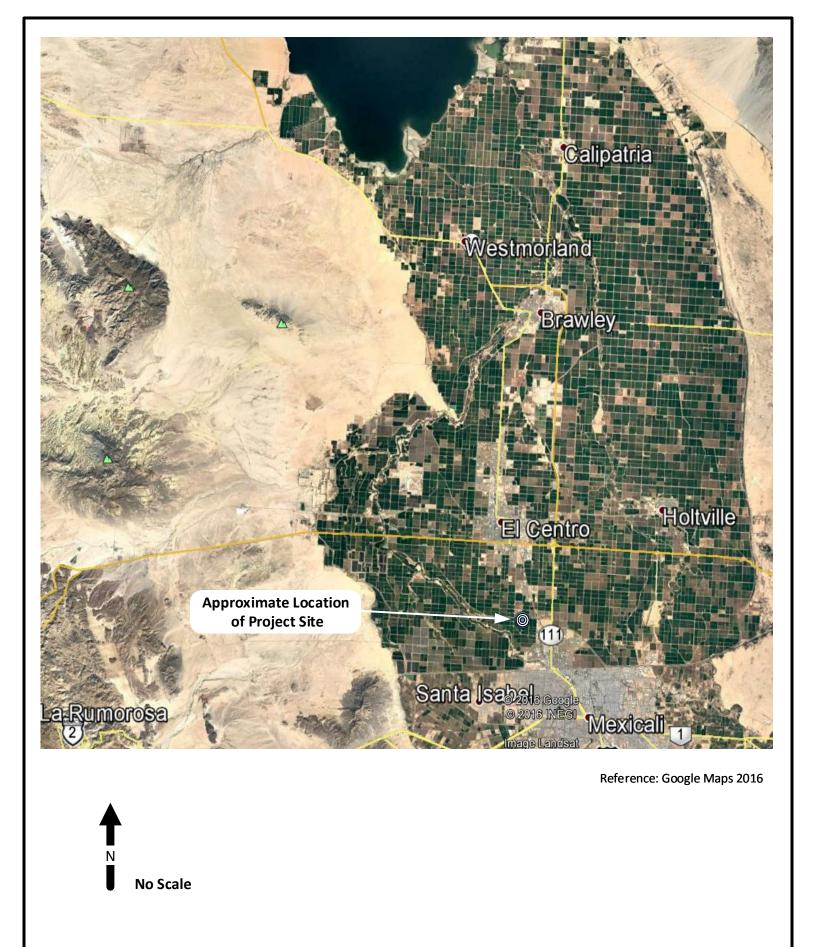
Due to the limited nature of our field explorations, conditions not observed and described in this report may be present on the site. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation and laboratory testing can be performed upon request. It should be understood that conditions different from those anticipated in this report may be encountered during the proposed structure construction operations.

Site conditions, including ground-water level, can change with time as a result of natural processes or the activities of man at the subject site or at nearby sites. Changes to the applicable laws, regulations, codes, and standards of practice may occur as a result of government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which NV5 has no control.

NV5's recommendations for this site are, to a high degree, dependent upon appropriate quality control of subgrade preparation, fill/backfill placement, and foundation construction. Accordingly, the recommendations are made contingent upon the opportunity for NV5 to observe grading operations and foundation excavations for the proposed construction. If parties other than NV5 are engaged to provide such services, such parties must be notified that they will be required to assume complete responsibility as the geotechnical engineer of record for the geotechnical phase of the project by concurring with the recommendations in this report and/or by providing alternative recommendations.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. NV5 should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

NV5 has endeavored to perform this study using the degree of care and skill ordinarily exercised under similar circumstances by reputable geotechnical professionals with experience in this area in similar soil/rock conditions. No other warranty, either expressed or implied, is made as to the conclusions and recommendations contained in this study.

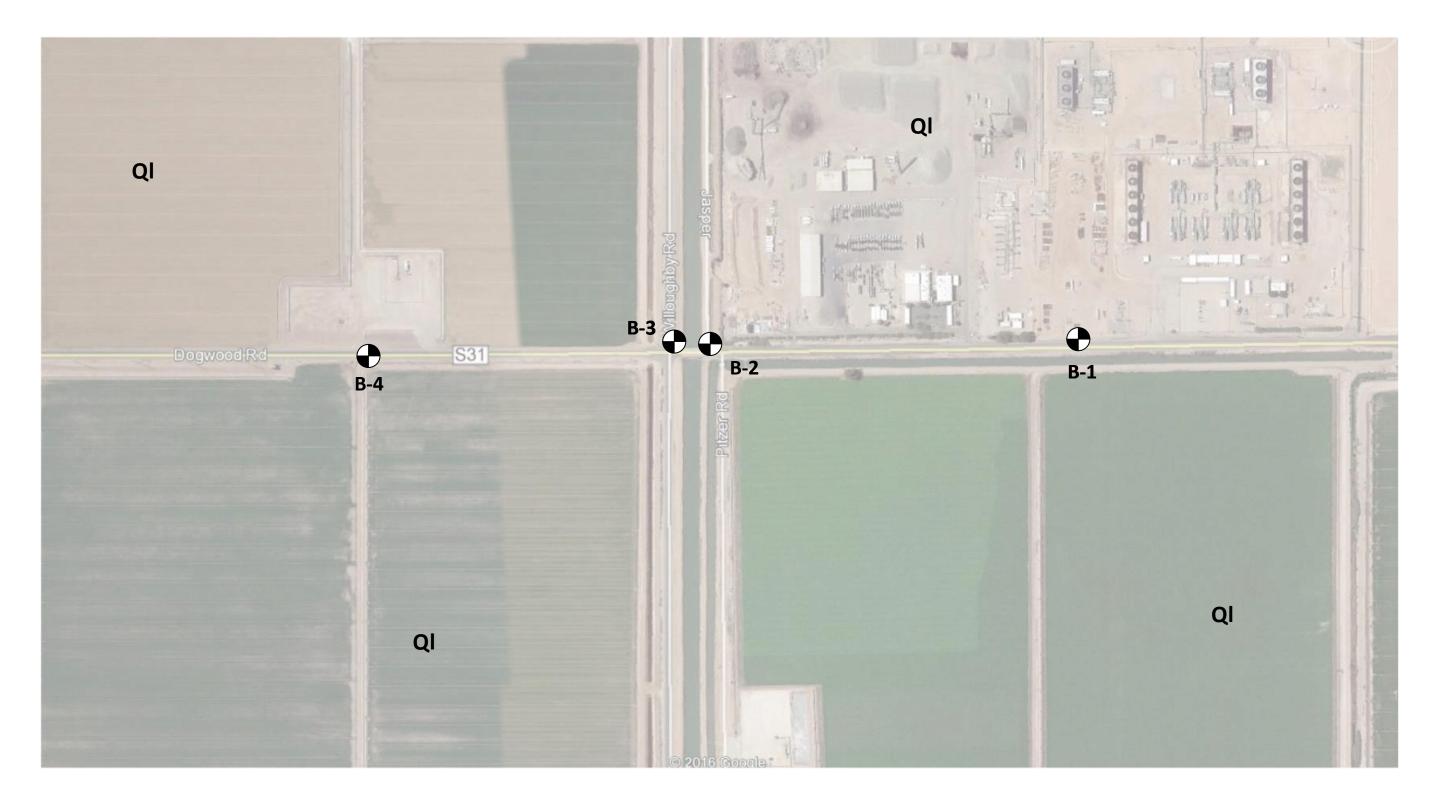

9.0 SELECTED REFERENCES

- 1. ASTM, 2001, Soil and Rock: American Society for Testing and Materials: vol. 4.08 for ASTM test methods D-420 to D-4914; and vol. 4.09 for ASTM test methods D-4943 to highest number.
- 2. ASTM, 2001, Geotechnical Engineering Standards: American Society for Testing and Materials: and ASTM test method D-7012.
- 3. Bell F. G., 2007, Engineering Geology, 2nd Edition.
- 4. Boulanger, R.W. and Idriss, I.M., 2014, CPT and SPT Based Liquefaction Triggering Procedures, University of California Davis, Center for Geotechnical Modeling Report No. UCD/CGM-14/01, pp. 1-134.
- 5. California Department of Conservation, Division of Mines and Geology, 1997, Guidelines for Evaluation and Mitigation of Seismic Hazards in California: Special Publication 117.
- California Department of Conservation, Division of Mines and Geology, 1998, Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada: International Conference of Building Officials, dated February, Scale 1" = 4 km/
- California Geological Survey, Geologic Data Map No. 2; Compilation and Interpretation by: Charles W. Jennings (1977). Updated version by: Carlos Gutierrez, William Bryant, George Saucedo, and Chris Wills. Graphics by: Milind Patel, Ellen Sander, Jim Thompson, Barbara Wanish and Milton Fonseca Plesch, Anndreas et. al., 2007, Community Fault Model (CFM) for Southern California; in the Bulletin of the Seismological Society of America, Vol. 97, No. 6. pp. 1793-1802, dated December.
- 8. Caltrans, Corrosion Guidelines, Version 2.0, 2012
- 9. Caltrans Standard Specifications, 2015
- Hart, E.W., and Bryant, W.A., 1997, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zone Maps: California Department of Conservation, Division of Mines and Geology Special Publication 42, 38 pp.,
- 11. Hunt, Roy E., 1986, Geotechnical Engineering Analysis and Evaluation.
- 12. International Building Code, 2012.
- 13. International Conference of Building Officials, 1997, Uniform Building Code: Volume 2.

- Jennings, C.W., 1994, Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions: California Department of Conservation, Division of Mines and Geology Geologic Data Map No. 6, scale 1:750,000.
- 15. Idriss, I.M. and Boulanger, R.W., 2008, Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute (EERI) Monograph MNO-12.
- 16. InfraGEO Software, 2017b, AXIALCAP Version 6.0, Simplified Liquefaction Hazards Assessment Using Standard Penetration Test (SPT) Data.
- 17. InfraGEO Software, 2017a, SPTLIQ Version 6.0, Simplified Liquefaction Hazards Assessment Using Standard Penetration Test (SPT) Data.
- 18. Ishihara, K., 1985, Stability of Natural Deposits during Earthquakes: Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, Volume 1, pp. 321-376.
- 19. Jennings, C.W., and Saucedo, G. J. 1999, Simplified Fault Activity Map of California, Map Sheet 54, (Revised 2003 by Toppozada, T., and Branum, D.).
- 20. Macnab, A., 2002, Earth Retention Systems Handbook.
- 21. Schnabel, H. Jr., 1982, Tiebacks in Foundation Engineering and Construction.
- 22. Southern California Earthquake Center, 1999, Recommended Procedures for Implementation of DMG Special Publication 117 Guidelines for Analyzing and Mitigating Liquefaction in California: dated March, 63 pp.

Figures

NV5 An NV5 West, Inc. Company - Offices Nationwide 10592 Avenue of Science, Suite 200 San Dlego, CA Tel: (858) 715-5800, Fax: (858) 715-5810


Project No: 22816-00103

Date:

SK Drawn: July 2016

Site Location Map Dogwood Rd Bridge Replacement Imperial County, California

Figure No. 1

0 200 400 600 800 1000

Approximate scale in feet

MAP SYMBOLS

GEOLOGIC UNITS

 \bullet B-4

Approximate location of exploratory boring

QI Quaternary lake deposits

NV5 Project No: 226816-00103.02 An NV5 West, Inc. Company - Offices Nationwide Drawn: GC 10592 Avenue of Science, Suite 200 San Dlego, CA Tel: (858) 715-5800, Fax: (858) 715-5810 Date: July 2016

Base map adapted from Google Maps 2016

Geotechnical Map Dogwood Road Bridge Replacement Imperial County, California

Figure No. 2

Reference: Jenkins, Olaf P, compiled by Strand, R.G., 1962, Geologic Map of California, San Diego-El Centro Sheet: California Department of Conservation, Division of Mines and Geology, map scale 1:250,000.

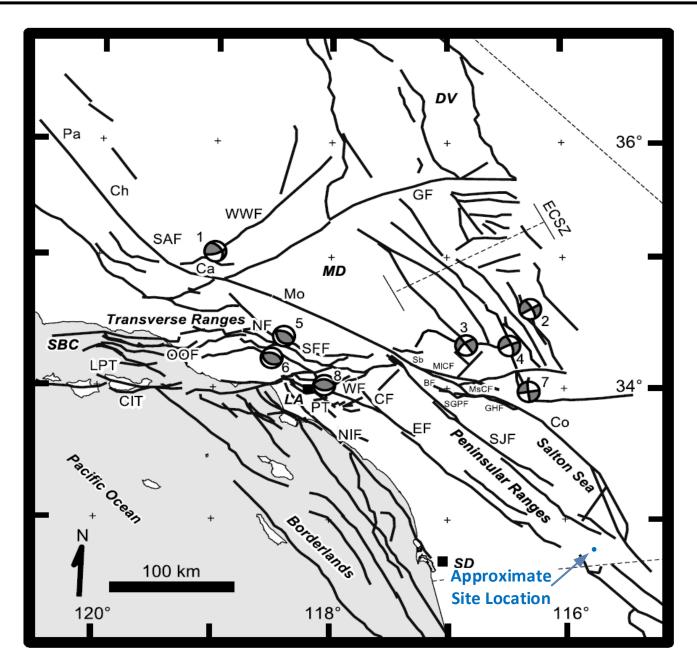
NV5ProjectAn NV5 West, Inc. Company - Offices NationwideDrawn:10592 Avenue of Science, Suite 200Drawn:San Dlego, CADate:Tel: (858) 715-5800, Fax: (858) 715-5810Date:

DESCRIPTION OF MAP UNITS

Dune sand

Alluvium

Lake deposits


 Project No:
 226816-00103.02

 Drawn:
 GC

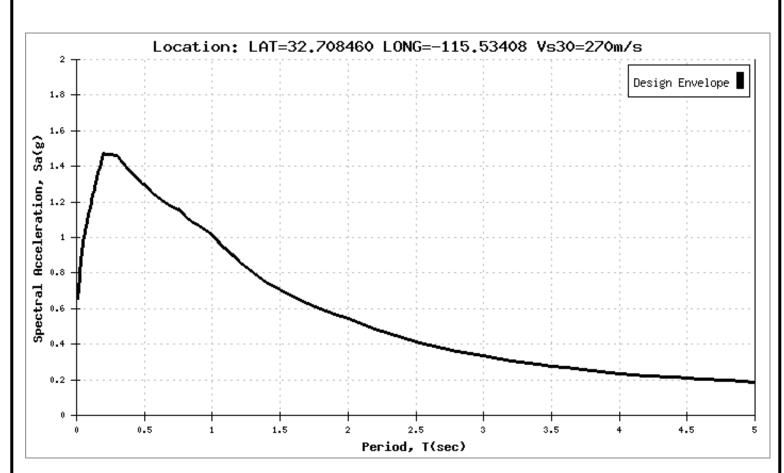
 Date:
 July 2016

Regional Geologic Map Dogwood Road Bridge Replacement Imperial County, California

Figure No. 3

Map of southern California showing the geographic regions, faults and focal mechanisms of the more significant earthquakes. **Regions:** Death Valley, DV; Mojave Desert MD; Los Angeles, LA; Santa Barbara Channel, SBC; and San Diego, SD. **Indicated Faults:** Banning fault, BF; Channel Island thrust, CIT; Chino fault, CF; Eastern California Shear Zone, ECS2; Elsinore fault, EF; Garlock fault, GF; Garnet Hill fault, GHF; Lower Pitas Point thrust, LPT; Mill Creek fault, MICF; Mission Creek fault, MsCF; Northridge fault, NF; Newport Inglewood fault, NIF; offshore Oak Ridge fault, OOF; Puente Hills thrust, PT; San Andreas fault (sections: Parkfield, Pa; Cholame, Ch; Carrizo; Ca; Mojave, Mo; San Bernardino, Sb; and Coachella, Co); San Fernando fault, SFF; San Gorgonio Pass fault, SGPF; San Jacinto fault, SJF; Whittier fault, WF; and White Wolf fault, WWF. **Earthquake Focal Mechanisms:** 1952 Kern County, 1; 1999 Hector Mine, 2; 1992 Big Bear, 3; 1992 Landers, 4; 1971 San Fernando, 5; 1994 Northridge, 6; 1992 Joshua Tree, 7; and 1987 Whittier Narrows, 8.

Reference: Plesch, Anndreas et. al., 2007, Community Fault Model (CFM) for Southern California; in the *Bulletin of the Seismological Society of America*, Vol. 97, No. 6. pp. 1793-1802, dated December.


For Schematic Use Only-Not a Construction Drawing

NV5 An NV5 West, Inc. Company – Offices Nationwide

10592 Avenue of Science, Suite 200 San Dlego, CA Tel: (858) 715-5800, Fax: (858) 715-5810 Project No: 226816-00103.02
Drawn: GC
Date: July 2016

Regional Fault Map Dogwood Road Bridge Replacement San Diego County, California


```
Reference: Caltrans ARS Online (v2.3.07)
```


Project No: 22816-00103

SK July 2016 Date:

Drawn:

Seismic Design Envelope Dogwood Rd Bridge Replacement Imperial County, California

Appendix A

Exploratory Boring Logs

Logs of Exploratory Borings

Bulk and relatively undisturbed drive samples were obtained in the field during our subsurface evaluation. The samples were tagged in the field and transported to our laboratory for observation and testing. The drive samples were obtained using the Standard Penetration Test (SPT) samplers as described below.

California Modified Split Spoon Sampler

The split barrel drive sampler is driven with a 140-pound hammer allowed to drop freely 30 inches in general accordance with ASTM D1587. The number of blows per foot recorded during sampling is presented in the logs of exploratory borings. The sampler has external and internal diameters of approximately 3.0 and 2.4 inches, respectively, and the inside of the sampler is lined with 1-inch-long brass rings. The relatively undisturbed soil sample within the rings is removed, sealed, and transported to the laboratory for observation and testing.

Standard Penetration Test (SPT) Sampler

The split barrel sampler is driven with a 140-pound hammer allowed to drop freely 30 inches in general accordance with ASTM D1586. The number of blows per foot recorded during sampling is presented in the logs of exploratory borings. The sampler has external and internal diameters of 2.0 and 1.5 inches, respectively. The soil sample obtained in the interior of the barrel is measured, removed, sealed and transported to the laboratory for observation and testing.

N V 5

LOG SYMBOLS:

California sampler (2-1/2 inch outside diameter)

Modified California sampler (3 inch outside diameter)

Standard penetration Split spoon sampler (2 inch outside diameter)

NX size core barrel (2-5/8 inch outside diameter)

Shelby tube

Water level ▼ (level after completion) Water level ∇ (level where first encountered) Abbreviations: SA - Sieve Analysis P200 - Percent passing #200 sieve AL - Atterberg Limits LL - Liquid limit DS - Direct shear test 'R' - R-value test CS - Corrosivity test EI - UBC expansion index MD - Laboratory compaction test CN - Consolidation test

General Notes:

1. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual.

2. No warranty is provided as to the continuity of soil conditions between individual sample locations.

- 3. Logs represent general soil conditions observed at the point of exploration on the date indicated.
- 4. In general, unified soil classification designations presented on the logs were evaluated by visual methods only. Therefore, actual designations (based on laboratory tests) may vary.

Consistency criteria based on field tests							Pocket** penetrometer
Relative density	SPT* (# blows/ft)	Relative density (%)		Consistency	SPT (# blows/ft)	Undrained shear strength (tsf)	Unconfined compressive strength
Very Loose Loose Medium Dense Dense Very dense	<4 4 - 10 10 - 30 30 - 50 >50	0 - 15 15 - 35 35 - 65 65 - 85 85 - 100		Very soft Soft Medium stiff Stiff Very stiff Hard	<2 2 - 4 4 - 8 8 - 15 15 - 30 >30	<0.13 0.13 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0	<0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 2.0 - 4.0 >4.0

Number of blows of 140 pounds hammer falling 30 inches to drive a 2 inch C.D. (1 3/8" I.D.) split barrel samler (ASTM - 1386 standard penetration test)

** Unconfined compressive strength in Tons/ft2. Read from pocket penetrometer

Moisture content

Description	Field test					
Dry	Dry Absence of moisture, dusty, dry to the touch					
Moist	Damp but no visible water					
Wet	Visible free water, usually soil is below water table					
Cementation						
Description	Field test					
Weakly	Crumbles or breaks with handling or slight finger pressure					
Moderately	Crumbles or breaks with considerable finger pressure					
Strongly	Will not crumble or break with finger pressure					

San Diego, CA 92128

Project No: 226816-00103.02 Drawn: GC

July 2016

Date:

Title:

Project:

Log Legend Dogwood Road Bridge Replacement Imperial County, California

Major Divisions			Symb	ols	Typical Descriptions	
			Graph	Letter		
	Gravel	Clean Gravels		GW	Well-Graded Gravel, Gravel SAND mixtures, little of no fines	
Coarse Grained Solls	and Gravely solls more than 50% of coarse	(Little or no fines)	0000	GP	Poorly-Graded Gravels, Gravel - SAND mixtures, little or no fines	
		Gravels with fines	0000 0000 0000	GM	Silty Gravels, Gravel- SAND- Silt mixture	
	fraction retained on No. 4 sieve	(Appreciable amount of fines)		GC	Clayey Gravels, Gravel - SAND - Clay mixtures	
	Sand	Clean SANDS		SW	Well-Graded SANDS, Gravely, SANDS, little or no fines	
More than 50& of material is larger than No. 200 sleve size	and Sandy Solls More than 50% of coarse fraction	(Little or no fines)		SP	Poorly - Graded SANDS, Gravelly SAND, Ittle or no fines	
		Sands with Fines (Appreciable amount of fines)		SM	SIRy SANDS, SAND-SIR mixtures	
	passing on No.4 sieve			SC	Clayey SANDS, SAND - Clay mixtures	
		Liquid Limit less than 50		ML	Inorganic Silts and very fine SANDS, rock flour, Silty or Clayey fine SANDS or clayey Silts with slight Plasticity	
Fine grained	Silts and Clays			CL	inorganic Clays of low to medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clays	
sols				OL	Organic Silts and organic Silty Clays of low Plasticity	
More than 50% of material is		Liquid Limit Greater than 50		МН	inorganic Silts, micaceous or diatomaceous fine SAND or Silty Solis	
smaller than No. 200 sleve size	Silts and Clays			СН	Inorganic Clays of high Plasticity	
				он	Organic Clays of medium to High Plasticity, organic Silts	
	Highly organic soils				Peat, Humus, swamp soils with High organic contents	

Soil Classification Chart

NOTE: Dual symbols are used to indicate borderline soli classifications.

Project No: 226816-00103.02 GC Drawn: San Diego, CA 92128 Tel: (858) 715-5800, Fax: (858) 715-5810

Date:

July 2016

Title:

Project:

Log Legend Dogwood Road Bridge Replacement Imperial County, California

	V	5	Proj		Dogwood Rd Bridge Replacement		Bo	ring	B-1
	V	Project Location: Imperial County, California Project Number: 226816-00103.02			Sheet 1 of 1				
Date(s)					2016 Logged SR Checked			<u> </u>	SK
Drilled Drilling Method		Hollow Stem Auger Boring Grinch Approximate			996 feet				
Drilling	ling Pacific Drilling Sampling California Split Spoon and Hamm			Compliant California Split Spoon and	Elevation				
Drill Rig	rill Rig Hollow Stem Auger Log			ow Ste		32.7130	115.		
Type:	۵	î			MATERIAL DESCRIPTION				
Depth (ft)	Sample Type	Blows / 6 in. (N)	Sample ID	USCS Class.	This log is an integral part of the accompanying report and must be used together with the r relevant interpretation. The descriptions contained hereon apply only at this boring location ar time of excavation. Subsurface data are a simplified summary of actual conditions encountered vary at other locations and with the passage of time.	ind at the		Dry Weight (pcf)	Other Tests and Remarks
-0				CL	silty CLAY-firm to stiff-reddish brown-moist				
					-]		
-					_		4		
-					-		-		
-5		5	0-14		_	-	-		
-		7 6	Cal 1	CL	siltv CLAY-stiff-brown-moist-with stain		26.1	95.7	
					-]		
_					-				
- 10		2			_	-	_		
-	Х	3 4	SPT 1		-		24.1		
-				СН	_ silty CLAY-firm-brown-moist-high plasticity		+		
-					-		1		
- 	~~				-	_]		
-		5 8 12	Cal 2	CL	-		25.8	99.8	
-		12		UL.	sandy CLAY-stiff-brown-moist-medium to high plasticity Total depth : 16.5		-	00.0	
-					Ground water not encountered No caving		+		
-					Boring backfilled on 3/24/2016		1		
<u> 20 </u>					-	-]		
					-		4		
-					-		4		
-					-		-		
- 25					_	-	+		
					-		1		
					-]		
-					-		4		
30							Sam	ple Typ	e
					Cal. Mod. 🛛 SF	∍т 🎇	Bulk		Other No Recovery

N	V	5	Project: Dogwood Rd Bridge Replacement Boring B-2 Project Location: Imperial County, California									B-2	
		U			lumber:	226816-0010	-			Sheet 1 of 3			
Date(s) Drilled			Ма	arch 2	5, 2016	Logged By	SR		Checked By	56			
Drilling Method			Hollo	ow Ste	m Auger	Boring Diameter	6-inch		Approximate Surface Elevation	Approximate 996 feet			
Drilling Contract	or			SG Dr	illing	Sampling Method	California Split Spo Standard Penetratio		Hammer Data				
Drill Rig			Holl	ow Ste	em Auger		Geotechnical Map, Figu		Lat Long.: 32.708	9115	.5342		
Type:		-	-						-				
Depth (ft)	Sample Type	Blows / 6 in. (N)	Sample ID	USCS Class.	relevant interpretati	ral part of the ac on. The descript Subsurface data	ccompanying report and mu ions contained hereon appl are a simplified summary of	together with the report for solutions and at the		Dry Weight (pcf)	Other Tests and Remarks		
-0				CL-ML	0-2':SILT-CL	AY-firm-mois	t-medium plasticity			1			
					_								
-					_					4			
-					-					4		-	
5		2										groundwater @ 5'	
-	X	2 4	SPT 1	СН	CLAY-soft-lie	aht brown-we	t			29.7			
-					_					4			
-					_					4			
-					-					4			
<u> </u>		2 3							-	1			
		3			-					1		No recovery	
]			
					_]			
<u> </u>	X	4 5	SPT 2										
-		7		СН	CLAY-soft-d	ark brown-we	t-high plasticity-with r	reddish ora	ange mottling	28.9	99.3		
-					_					4			
-					-					4			
-	\mathbb{Z}	4			-					4			
_20		5 6	Cal 2	SC CL			edium dense-brown-w		-	-			
-	_				_		,			25.5	100.1		
┝│					_					4			
-					_					4			
┣ ┃	М	2 2	SPT 3		-					1			
- 25	М	2 3	5113		<u> </u>				-	29.3			
					-					1			
					-					1			
					_]			
- 30					decreasing s	and with dep	th			1			
								Cal. N	Aod. SPT	<u>Sam</u> Bulk	ple Typ	Other No Recovery	

	V	5	Proj		Dogwood Rd Bridge Replacement	Bo	ring	B-2		
	V	J			ocation: Imperial County, California umber: 226816-00103.02	Sheet 2 of 3				
Date(s) Drilled			Ма	rch 2	5, 2016 Logged SR Checked By By			SK		
Drilling Method			Hollo	w Ste	m Auger Boring 6-inch Approximate Diameter 5-inch Surface Elevation			996 feet		
Drilling Contract	or		Pa	acific [Drilling Sampling California Split Spoon and Method Standard Penetration Test Hammer Data	14	0 pound	d, auto chain, 30" drop		
Drill Rig Type:			Hollo	ow Ste	em Auger Location: See Geotechnical Map, Figure 2 Lat Long.: 32.708	9115	5.5342			
t)	,pe	(Z)		ss.	MATERIAL DESCRIPTION	a %	ht			
Depth (ft)	Sample Type	Blows / 6 in. (N)	Sample ID	USCS Class.	This log is an integral part of the accompanying report and must be used together with the report for relevant interpretation. The descriptions contained hereon apply only at this boring location and at the time of excavation. Subsurface data are a simplified summary of actual conditions encountered and may vary at other locations and with the passage of time.		Dry Weight (pcf)	Other Tests and Remarks		
- 30		15 17	Cal 2		Decreased sand @30'					
-	Ø	21		СН	CLAY-stiff-brown-wet-high plasticity-orange mottling	27.9	97.0			
_					_	4				
-					-	4				
- 35	Μ	6				4				
-	М	7 7	SPT 4	SC	clayey SAND-loose to medium dense-brown-wet	23.4				
					-	1				
					_]				
-40		9		SC	Increase in clay content from 40'-41'	4				
-		11 20	Cal 4	SC	clayey SAND-dense-brown-wet-fine with black laminations 24.2 97.8					
-					-	4				
-					-	1				
-]				
-	Х	20 25 17		SC	- clayey SAND-dense- brown-fine-with black laminations	23.8				
-					-	-				
-					-	4				
-					-	1				
— 50 -		8 5		SC			00.5			
 -		10			clayey SAND-medium dense- brown-fine-with black laminations	24.1	99.5			
-					-	4				
-					_	4				
- 55	\mathbb{N}	7 9		SC		1				
	\square	17			-	23.7				
					_	4				
-					-	4				
60					Increasing clay content, grading to clayey SAND (SC)	<u>Sam</u>	ple Typ	<u>e</u>		
					Cal. Mod. X SPT	Bulk		Other No Recovery		

N		5	Proje		-	I Rd Bridge Replacement			Во	ring	B-2
	V	J	-		ocation: lumber:	Imperial County, California 226816-00103.02			Sheet	3	of 3
Date(s) Drilled					5, 2016	Logged SP		Checked		-	SK
Drilling			Hollo	w Ste	m Auger	By Gring Boring 6-inch		By Approximate			996 feet
Method Drilling					Drilling	Diameter California Split Spoon		Surface Elevation Hammer Data	14	0 ກດເມກ	d, auto chain, 30" drop
Contract Drill Rig	or					Method Standard Penetration Location: See Geotechnical Map, Figure		Lat Long.: 32.70			
Туре:				JW SIE	em Auger			Ũ	59115	.5542	
	Sample Type	Blows / 6 in. (N)	Sample ID	USCS Class.	relevant interpretat time of excavation.	matternal descriptions contained hereon apply o Subsurface data are a simplified summary of ac ns and with the passage of time.	be used t inly at this	ogether with the report f boring location and at tl		Dry Weight (pcf)	Other Tests and Remarks
- 60 - -		6 11 17	Cal 6	SC	clayey SANI clay grades	D-medium dense-brown,wet-with blac to sand	k lamin	ation- decreasing	22.0	103.3	
- 65 -	X	6 15 15		SC	 clayey SANI	clayey SAND-dense-brown-wet-limited recovery					
- 		3 2 5									
- - - - - - - - - - - - - - - - - - -					No caving	71.5' er encountered at 5' illed with cuttings and bentonite chips	s on 3/2	5/2016			
90						וניק			<u>Sam</u>	ole Typ	<u>e</u>
							Cal. N	lod. 🛛 SPT 🖁	× Bulk		Other No Recovery

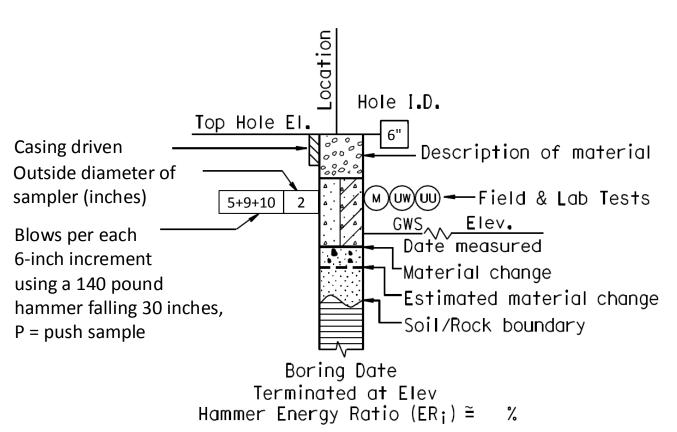
N	V	5	Proj		Dogwood Rd Bridge Replacement	Bo	ring	B-3
	V	J			ocation: Imperial County, California lumber: 226816-00103.02	Sheet	1	of 3
Date(s) Drilled					4, 2016 Logged SR Checked By By			SK
Drilling Method			Hollo	ow Ste	em Auger Boring 6-inch Approximate Surface Elevation			996 feet
Drilling Contract	or		Pa	acific [Drilling Sampling California Split Spoon and Hammer Data	14	0 poun	d, auto chain, 30" drop
Drill Rig Type:	-		Hollo	ow Ste	em Auger Location: See Geotechnical Map, Figure 2 Lat Long.: 32.7086	6115	.5342	
	e	(Z)		s.	MATERIAL DESCRIPTION	.0	It	
Depth (ft)	Sample Type	Blows / 6 in. (N)	Sample ID	USCS Class.	This log is an integral part of the accompanying report and must be used together with the report for relevant interpretation. The descriptions contained hereon apply only at this boring location and at the time of excavation. Subsurface data are a simplified summary of actual conditions encountered and may vary at other locations and with the passage of time.		Dry Weight (pcf)	Other Tests and Remarks
-0				CL	silty CLAY-firm-tan-reddish brown-moist-medium plasticity			
					_]		
-					-	4		
-					-	4		
-5	0	4				-		
-		5 9	Cal 1	СН	CLAY-soft to firm-dark brown-moist-medium to high plasticity	26.4	94.5	
					-]		
_					-	4		_
	<u></u>	2				_		groundwater @ 10'
-	X	2 3	SPT 1	SC	clayey SAND-loose-brown-wet-fine	25.9		
-					-	4		
-					-	1		
_ 15	22]		
-		4 5 8	Cal 2	СН	CLAY-stiff-dark brown-wet-high plasticity-with reddish orange molting	30.7	92.8	
-		U		011			02.0	
-					_	4		
-						1		
-20	$\left[\right]$	2 2	SPT 2	SC	clayey SAND to sandy CLAY- loose-brown-wet-micaceous	1		
	\square	3		СН	CLAY-soft-dark brown-wet-reddish brown molting	24.3		
					-	4		
-					-	4		
- 25	0	4		SC	25'-26':increasing sand	4		
$\left \right $		4 4	Cal 3	CH SC	increasing clay below 26' clayey SAND-loose-brown-wet-fine	25	97.6	
					-	1		
					-]		
30								
					Cal. Mod. 🛛 SPT 🖗	<u>Sam</u> Bulk	ple Typ	Other No Recovery

NI	V	5	Proj		Dogwood Rd Bridge Replacement		Bor	ring	B-3	
	V	J			DCation: Imperial County, California umber: 226816-00103.02	5	Sheet	2	of 3	
Date(s) Drilled					, 2016 Logged SR Checked By By				SK	
Drilling Method			Hollo	ow Ste	m Auger Boring 6-inch Approximate Diameter Surface Elevation	n			996 feet	
Drilling Contract	or		Pa	acific [Drilling Sampling California Split Spoon and Method Standard Penetration Test Hammer Data		14	0 poun	d, auto chain, 30" drop	
Drill Rig Type:			Holle	ow Ste	m Auger Location: See Geotechnical Map, Figure 2 Lat Long.: 32	2.7086	115	.5342		
	e	2		<i>i</i>	MATERIAL DESCRIPTION		. 0	ţ		
Depth (ft)	Sample Type	Blows / 6 in. (N)	Sample ID	USCS Class.	This log is an integral part of the accompanying report and must be used together with the reprelevant interpretation. The descriptions contained hereon apply only at this boring location and time of excavation. Subsurface data are a simplified summary of actual conditions encountered and vary at other locations and with the passage of time.	at the	Moisture Content %	Dry Weight (pcf)	Other Tests and Remarks	
- 30	M	7 8	SPT 3	SC	clayey SAND-loose to medium dense-brown-wet					
-	Δ	4	0110		-	-	25.8			
					-					
-					-	4			flowing sand-adding water	
- 35	М	5			_	_				
-	Ň	9 10	SPT 4	SC	- clayey SAND medium dense-brown-wet-fine	-	24.3			
-					-	-				
— 40	-	_								
-		5 7 12	Cal 4	SC	25.5 97.1					
-	~				-	-	20.0	01.1		
-					-	4				
-					- black laminated sand	-				
— 45	M	8 10	SPT 5	SC	increasing clay at 46'					
	Z	8			clayey SAND-medium dense- brown-fine-with black laminations]	23.7			
					-					
┡					-	4				
- 50		1			_	\neg				
┣		3 4		SC	-	4			No recovery	
┢					-	+				
					-	4				
- 					-					
-	M	2 3 5	SPT 6	SC			20.4			
┡		5		30	clayey SAND-loose- brown-fine-with black laminations	4	20.4			
┣					-	4				
-					-	┥				
60	1		[]			Ø				
					Cal. Mod. X	\mathbf{X}	Bulk		Other No Recovery	

Project Location: Imperial County, Catornia Project Number: 22814-0/10.302 Sector: 22814-0/10.302 S	NI	V	5	Proj		-	-	je Replacem	ent		Во	ring	B-3	
Date in billed March 24. 2016 Logged by SR Checked by Sr SK Diffied Hollow Stem Auger Boiring Dimeter 6-inch Approximate Split Spon and Split Spon and Standard Penetration Test Test Split Spon and Split Split Spon and Standard Penetration Test Test Split Spon and Standard Penetration Test Split Spon and Split Spon and Split		V	J				•	•			Sheet	3	of 3	
Defining Method Holicow Stem Auger Boiring Dimester Generation Standard Penetration Approximate Standard Penetration 996 feet Diming Contractor Pacific Diming Sampling Standard Penetration Test Hammer Data 140 pound, auto chain, 30° drop Diming Type Holicow Stem Auger Location: See Geotechnical Map, Figure 2 Lat Long:: 32.7086 - 115.5342 Diming Bing Bing Bing Bing Bing Bing Bing B							Logged							
Defining Contractor Practic Drilling Sampling Method California Split Spoon and Standard Penetration Test Hammer Data 140 pound, auto chain, 30° drop Defining Type: Hollow Stem Auger Location: See Gendenchical Map; Figure 2 Lat. Long: 32.7086 -115.5442 Egg Gar Gar Gar Gar Gar Gar Gar Gar Gar Gar	Drilling			Hollo	ow Ste	em Auger	Boring	6-inch		Approximate			996 feet	
Contraction Control Statistication Performed Statistication	Drilling			Pa	acific [Drilling	Sampling				14	0 pound	d, auto chain, 30" dro	qq
Image: Projection Image: Projecion Image: Projection Ima	Drill Rig	.01												·
Image: Second	Type:		6							_				
3 SPT 7 Sc Clerely SAND-loose-brown-wet-fine-black laminations 23.3 65 13 20.5 Sc clayey SAND-loose-brown-wet-fine-black laminations 24.2 101.5 70 6 8 SPT 8 Sc Becomes clayey SAND (SC) to sandy CLAY (CL) 28 70 6 SPT 8 Sc Becomes clayey SAND (SC) to sandy CLAY (CL) 28 70 7 6 SPT 8 Sc Becomes clayey SAND (SC) to sandy CLAY (CL) 28 70 8 SPT 8 Sc Becomes clayey SAND (SC) to sandy CLAY (CL) 28 70 8 SPT 8 Sc Becomes clayey SAND (SC) to sandy CLAY (CL) 28 70 - - - - - 70 - - - - - 70 - - - - - 70 - - - - - 75 - - - - - 75 - - - - - -	Depth (ft)	Sample Type	Blows / 6 in. (N	Sample ID	USCS Class.	relevant interpretati time of excavation.	gral part of the a ion. The descript Subsurface data	ccompanying report tions contained hereo are a simplified sum	and must be used t on apply only at this	ogether with the report boring location and at	Moisture Content %	Dry Weight (pcf)		
-65 □ 13 23 505° Cal 5 SC clayey SAND-loose-brown-wet-fine-black laminations 24.2 101.5 -70 □ 0 0 - - - - -70 □ 0 0 - - - - -70 □ 0 0 - - - - -70 □ 0 0 - - - - -70 □ 0 0 - - - - -70 □ 0 0 - - - - - -70 □ 0 0 - - - - - -70 □ 0 -	- 60	M	3	SPT 7	SC	clayey SANI	D-loose-brown	n-wet-fine-black	laminations					
1 1/2 Cal 5 SC clayey SAND-loose-brown-wet-fine-black laminations 24.2 101.5 -70 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 0 No caving Soning backfilled with cuttings and bentonite chips on 3/24/2016 - -75 1 1 1 1 1 - -75 1 1 1 - - - -80 1 1 1 - - - -80 1 1 1 - - - -80 1 1 1 1 - - - <	-		5			_					23.3			
1 1/2 Cal 5 SC clayey SAND-loose-brown-wet-fine-black laminations 24.2 101.5 -70 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 0 No caving Soning backfilled with cuttings and bentonite chips on 3/24/2016 - -75 1 1 1 1 1 - -75 1 1 1 - - - -80 1 1 1 - - - -80 1 1 1 - - - -80 1 1 1 1 - - - <	-					-					4			
1 1/2 Cal 5 SC clayey SAND-loose-brown-wet-fine-black laminations 24.2 101.5 -70 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 -70 0 0 No caving Soning backfilled with cuttings and bentonite chips on 3/24/2016 - -75 1 1 1 1 1 - -75 1 1 1 - - - -80 1 1 1 - - - -80 1 1 1 - - - -80 1 1 1 1 - - - <	-					-					4			
70 SC - clayey SAND-loose-brown-wet-fine-black laminations - 24.2 101.5 70	- 65	Ø		<u> </u>		<u> </u>					-			
- M 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 - - Total depth : 71.5' Ground water encountered at 10' - - - No caving Boring backfilled with cuttings and bentonite chips on 3/24/2016 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<	-			Cal 5	SC	clayey SANE	D-loose-brown	n-wet-fine-black	laminations		24.2	101.5		
- M 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 - - Total depth : 71.5' Ground water encountered at 10' - - - No caving Boring backfilled with cuttings and bentonite chips on 3/24/2016 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<	-					_					1			
- M 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 - - Total depth : 71.5' Ground water encountered at 10' - - - No caving Boring backfilled with cuttings and bentonite chips on 3/24/2016 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<							1							
- M 8 SPT 8 SC Becomes clayey SAND (SC) to sandy CLAY (CL) 28 - - Total depth : 71.5' Ground water encountered at 10' - - - No caving Boring backfilled with cuttings and bentonite chips on 3/24/2016 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<	-70						_ 1							
- Total depth : 71.5' Ground water encountered at 10' No caving Boring backfilled with cuttings and bentonite chips on 3/24/2016 - - - <td< td=""><td>-</td><td>X</td><td>8</td><td>SPT 8</td><td>80</td><td>Becomes cla</td><td colspan="7"></td><td></td></td<>	-	X	8	SPT 8	80	Becomes cla								
 No caving Boring backfilled with cuttings and bentonite chips on 3/24/2016 -75 -75 -75 -76 -77 -77	-	_ / X	0		00	Total depth :	71.5'		(02)					
$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	-					No caving			ite chips on 3/2	4/2016	4			
$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	-					-					4			
	- 75										-			
	_					_					1			
											1			
						_								
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	- 80					<u> </u>					4			
	-					-					4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					-					4			
	-					-					+			
	-					F					+			
	- 85					<u> </u>					1			
						-					1			
]			
						_								
	90													
Sample Type Cal. Mod. SPT Bulk Other No Recov									Cal. N	Iod. SPT	<u>Sam</u> Bulk			coverv

N	V	5	Proj		Dogwood Rd Bridge Replacement	Boi	ring	B-4				
	Y	J	-		ocation: Imperial County, California Jumber: 226816-00103.02	Sheet	1	of 1				
Date(s)					4 2016 Logged SR Checked	Oneer		SK				
Drilled Drilling					By By By Auger Boring 6 inch Approximate			994 feet				
Method Drilling					Drilling Sampling California Split Spoon and Hammer Data	14	0 pound	l, auto chain, 30" drop				
Contrac Drill Rig					em Auger Location: See Geotechnical Map, Figure 2 Lat Long.: 32.713		-	,,,,,,,,,				
Туре:												
Depth (ft)	Sample Type	Blows / 6 in. (N)	Sample ID	USCS Class.	MATERIAL DESCRIPTION This log is an integral part of the accompanying report and must be used together with the report for relevant interpretation. The descriptions contained hereon apply only at this boring location and at the time of excavation. Subsurface data are a simplified summary of actual conditions encountered and may vary at other locations and with the passage of time.	e e e	Dry Weight (pcf)	Other Tests and Remarks				
-0				CL	silty CLAY-firm-tan-reddish brown-moist-medium plasticity							
]						
⊫						1						
┡						1						
-5		2				4						
┠	X	2 3 5	SPT 1	СН	CLAY-soft-dark brown-moist-medium to high plasticity	23.9						
┣						-						
┣					+	-						
┠					+	-						
- 10		5	Cal 1			1						
┢		9 10	Cal 1	СН	CLAY-stiff-dark brown-moist-high plasticity	27.4	94.6					
F				5.1		1						
						1						
- 												
	M	3 4	SPT 2									
╞	V	4		SC	clayey SAND-loose-brown-wet-medium to high plasticity Total depth : 16.5'	20						
┡					Ground water not encountered No caving	4						
┣					Boring backfilled with cuttings on 3/24/2016	-						
_20						-						
┣					-	-						
┠					+	-						
┣					F	1						
┢					F	1						
- 25					-							
F						1						
I]						
					–]						
30												
					Cal. Mod. 🛛 SPT	<u>Sam</u> Bulk	ple Type	e Other No Recovery				
						Duik						

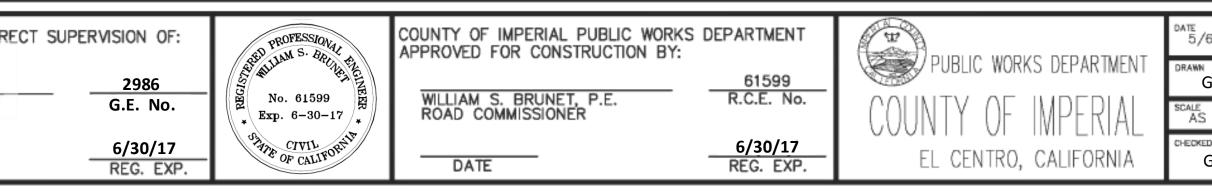
Appendix B


Log of Test Boring Sheets

<u>REFERENCE:</u> CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2010)

	CEMENTATION					
Description	Criteria					
Weak	Crumbles or breaks with handling or little finger pressure.					
Moderate	Crumbles or breaks with considerab finger pressure.					
Strong	Will not crumble or break with fing pressure.					

	BOREHOLE IDENTIFICATION					
Symbol	Hole Туре	Description				
Size	A	Auger Boring				
\$1ze	R P	Rotary drilled boring Rotary percussion boring (air)				
	R	Rotary drilled diamond core				
\$12e	HD HA	Hand driven (1-inch soil tube) Hand Auger				
•	D	Dynamic Cone Penetration Boring				
	СРТ	Cone Penetration Test (ASTM D 5778–95)				
	0	Other				
	Note: Size in Inches.					

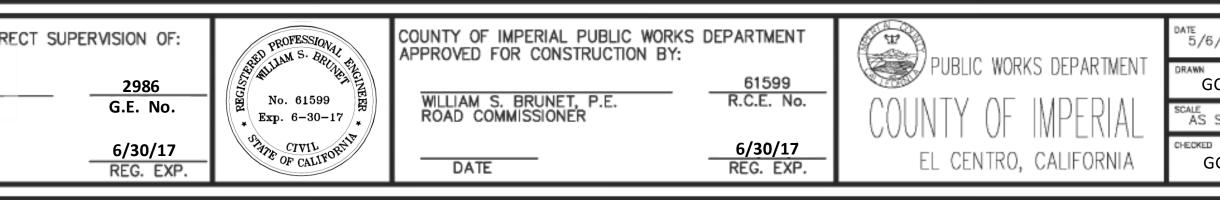

HOLLOW STEM AUGER

|--|

)r^ ble ger

		CONSISTENCY C	OF COHESIVE SO	ILS
Description	Unconfined Compressive Strength (tsf)	Pocket Penetrometer Measurement (tsf)	Torvane Measurement (tsf)	Field Approximation
Very Soft	< 0.25	< 0.25	< 0.12	Easily penetrated several inches by fist
Sof†	0.25 to 0.50	0.25 to 0.50	0.12 to 0.25	Easily penetrated several inches by thumb
Medium Stiff	0.50 to 1.0	0.50 to 1.0	0.25 to 0.50	Penetrated several inches by thumb with moderate effort
Stiff	1 to 2	1 to 2	0.50 to 1.0	Readily indented by thumb but penetrated only with great effort
Very Stiff	2 to 4	2 to 4	1.0 to 2.0	Readily indented by thumbnail
Hard	> 4.0	> 4.0	> 2.0	Indented by thumbnail with difficulty

	PLASTICITY OF FINE-GRAINED SOILS
Description	Criteria
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

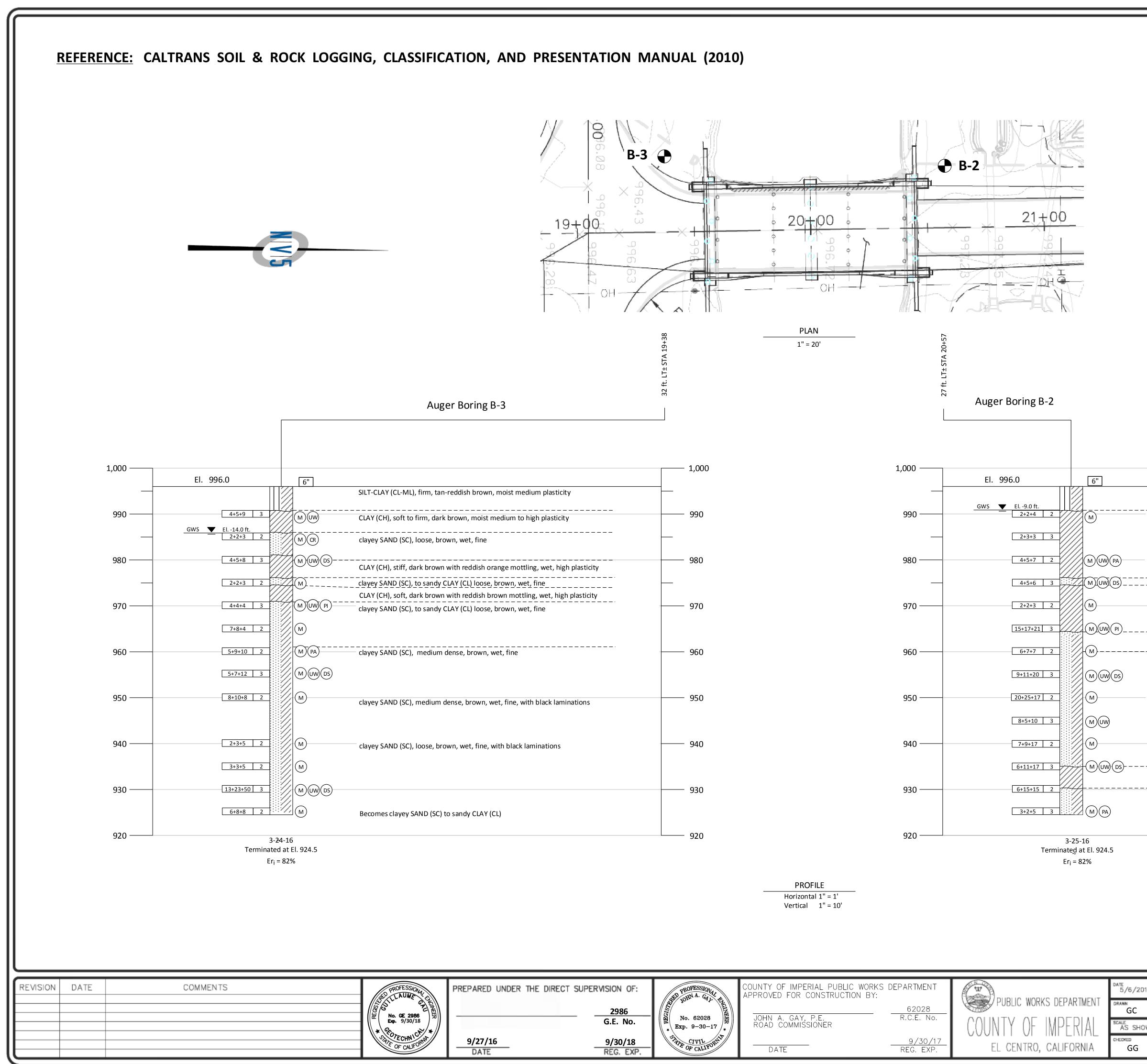


/6/2016	LOG OF TEST BORINGS	SOIL LEGEND	
∾ GC	DOGWOOD ROAD BRIDGE REPLACEMENT		
S SHOWN	OVER CENTRAL MAIN CANAL		
⊞ GG	BRIDGE NO. 58C-0042	S-11	SHEET OF 19 21

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2010)

GROUP SYMBOLS AND NAMES			FIELD AND LABORATORY		
Graphic/Symbol Group Names		Graphic/Symbol Group Names		TESTING	
	G₩	Well-graded GRAVEL Well-graded GRAVEL with SAND		Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL	C Consolidation (ASTM D 2435)
000	GP	Poorly graded GRAVEL Poorly graded GRAVEL with SAND	CL	SANDY lean CLAY SANDY lean CLAY with GRAVEL GRAVELLY lean CLAY	CL) Collapse Potential (ASTM D 5333)
	GW-GM	Well-graded GRAVEL with SILT		GRAVELLY lean CLAY with SAND SILTY CLAY SILTY CLAY with SAND	(CP) Compaction Curve (CTM 216)
		Well-graded GRAVEL with SILT and SAND Well-graded GRAVEL with CLAY (or SILTY CLAY)	CL-ML	SILTY CLAY with GRAVEL SANDY SILTY CLAY SANDY SILTY CLAY with GRAVEL	CR Corrosivity Testing (CTM 643, CTM 422, CTM 417)
	GW-GC	(or SILTY CLAY) Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND	CU Consolidated Undrained Triaxial (ASTM D 4767)
	GP-GM	Poorly graded GRAVEL with SILT Poorly graded GRAVEL with SILT and SAND		SILT SILT with SAND SILT with GRAVEL	DS Direct Shear (ASTM D 3080)
	GP-GC	Poorly graded GRAVEL with CLAY (or SILTY CLAY)	- ML	SANDY SILT SANDY SILT with GRAVEL GRAVELLY SILT	EI Expansion Index (ASTM D 4829)
,927 1917		Poorly graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		GRAVELLY SILT with SAND ORGANIC lean CLAY	M Moisture Content (ASTM D 2216)
	GM	SILTY GRAVEL SILTY GRAVEL with SAND	OL	ORGANIC lean CLAY with SAND ORGANIC lean CLAY with GRAVEL SANDY ORGANIC lean CLAY	OC Organic Content-% (ASTM D 2974)
	GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND		SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND	P Permeability (CTM 220)
	GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND	$\left \left\langle \left\langle \left\langle \right\rangle \right\rangle \right $	ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL	PA Particle Size Analysis (ASTM D 422
	S₩	Well-graded SAND Well-graded SAND with GRAVEL		SANDY ORGANIC SILT SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND	PI Plasticity Index (AASHTO T 90) Liquid Limit (AASHTO T 89) (PL) Point Load Index (ASTM D 5731)
	SP	Poorly graded SAND Poorly graded SAND with GRAVEL		Fat CLAY Fat CLAY with SAND Fat CLAY with GRAVEL	PM Pressure Meter
	S₩-SM	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL	СН	SANDY fat CLAY SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND	PP Pocket Penetrometer
	S₩-SC	Well-graded SAND with CLAY (or SILTY CLAY) Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		Elastic SILT Elastic SILT with SAND Elastic SILT with GRAVEL	(R) R-Value (CTM 301) (SE) Sand Equivalent (CTM 217)
	SP-SM	Poorly graded SAND with SILT Poorly graded SAND with SILT and GRAVEL	- MH	SANDY elastic SILT SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT GRAVELLY elastic SILT with SAND	SG Specific Gravity (AASHTO T 100)
	SP-SC	Poorly graded SAND with CLAY (or SILTY CLAY) Poorly graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		ORGANIC fat CLAY ORGANIC fat CLAY with SAND ORGANIC fat CLAY with GRAVEL	SL Shrinkage Limit (ASTM D 427)
	SM	SILTY SAND	ОН	SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY with GRAVEL GRAVELLY ORGANIC fat CLAY	SW Swell Potential (ASTM D 4546)
		SILTY SAND with GRAVEL CLAYEY SAND		GRAVELLY ORGANIC fat CLAY with SAND ORGANIC elastic SILT	(TV) Pocket Torvane
	SC	CLAYEY SAND with GRAVEL	-	ORGANIC elastic SILT with SAND ORGANIC elastic SILT with GRAVEL SANDY ORGANIC elastic SILT	Unconfined Compression-Soil (ASTM D 2166) Unconfined Compression-Rock
	SC-SM	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL		SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND	(ASTM D 2938)
<u> </u>	РТ	PEAT		ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL	UNCONSOLIDATED UNDRAINED Triaxial (ASTM D 2850) (UW) Unit Weight (ASTM D 4767)
ўў Ş		COBBLES COBBLES and BOULDERS BOULDERS	OL/OH	SANDY ORGANIC SOIL SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL GRAVELLY ORGANIC SOIL with SAND	VS Vane Shear (AASHTO T 223)

REVISION DATE COMMENTS	No. GE 2986 Exp. 09/30/16 * OF CALIFORNIA	PREPARED UNDER THE DIR 9/27/16 DATE
------------------------------------	---	---


APPARENT DENSI	TY OF COHESIONLESS SOILS
Description	SPT N ₆₀ (Blows / 12 inches)
Very loose	0 - 4
Loose	5 - 10
Medium Dense	11 - 30
Dense	31 - 50
Very Dense	> 50

MOISTURE				
Description Criteria				
Dry	Dry Absence of moisture, dusty, dry to the touch			
Moist Damp but no visible water				
Wet Visible free water, usually soil is below water table				

PERCENT OR PROPORTION OF SOILS				
Description Criteria				
Trace	Particles are present but estimated to be less than 5%			
Few	5 to 10%			
Lit+le	15 to 25%			
Some	30 to 45%			
Mos†ly	50 to 100%			

	PARTICLE SIZE			
Des	cription	Size		
Boulder		> 12"		
Cobble		3" to 12"		
Crovel	Coarse	3/4" to 3"		
Gravel	Fine	No. 4 to 3/4"		
	Coarse	No. 10 to No. 4		
Sand	Medium	No. 40 to No. 10		
	Fine	No. 200 to No. 40		

/6/2016	LOG OF TEST BORINGS	SOIL LE	
GC	DOGWOOD ROAD BRIDGE REPLACEMENT		
S SHOWN	OVER CENTRAL MAIN CANAL	6.40	
⊡ GG	BRIDGE NO. 58C-0042	S-12	SHEET OF 20 21

	1,000
SILT-CLAY (CL-ML), firm, moist medium plasticity	
CLAY (CH), soft, light brown, wet	990
CLAY (CH), soft, dark brown, wet, high plasticity with reddish orange mottling	980
decreasing sand with depth	970
CLAY (CH), stiff, brown, wet, high plasticity with orange mottling	
clayey SAND (SC), medium dense, brown, wet	960
Increasing clay content from 40'-41'	
 clayey SAND (SC), dense, brown, wet, fine with black laminations 	950
	940
Increasing clay content, grading to clayey SAND (SC)	
clayey SAND (SC) to sandy CLAY (CL), dense, brown, wet, limited recovery	930
Increasing clay with depth	

/6/2016 ∾ GC	LOG OF TEST BORINGS-3	LOG OF TEST BORINGS		
S SHOWN	OVER CENTRAL MAIN CANAL	S-13	SHEET OF	
GG	BRIDGE NO. 58C-0042		21 21	

— 920

Appendix C

Laboratory Test Results

SUMMARY OF LABORATORY TEST RESULTS

In-situ Moisture and Density Tests

The in-situ moisture contents and dry densities of selected samples obtained from the test borings were evaluated in general accordance with the latest version of D-2216 and D2937 laboratory test methods. The method involves obtaining the moist weight of the sample and then drying the sample to obtain is dry weight. The moisture content is calculated by taking the difference between the wet and dry weights, dividing it by the dry weight of the sample and expressing the result as a percentage. The results of the in-situ moisture content and density tests are presented in the following table and on the logs of exploratory borings in Appendix A.

Sample Location	Moisture Content (percent)	Dry Density (pounds per cubic foot)
Boring B-1 @ 6-6.5 feet	26.1	95.7
Boring B-1 @ 10-11.5 feet	24.1	-
Boring B-1 @ 15-16.5 feet	25.8	99.8
Boring B-2 @ 5-6.5 feet	29.7	-
Boring B-2 @ 15-16.5 feet	28.9	99.3
Boring B-2 @ 25-26.5 feet	29.3	-
Boring B-2 @ 31-31.5 feet	27.9	97.0
Boring B-2 @ 35-36.5 feet	23.4	-
Boring B-2 @ 45-46.5 feet	23.8	-
Boring B-2 @ 51-51.5 feet	24.1	99.5
Boring B-2 @ 55-56.5 feet	23.7	-
Boring B-2 @ 65-66.5 feet	22.0	-
Boring B-2 @ 70-71.5 feet	22.8	-
Boring B-3 @ 6-6.5 feet	26.4	94.5
Boring B-3 @ 10-11.5 feet	25.9	-
Boring B-3 @ 20-21.5 feet	24.3	-
Boring B-3 @ 26-26.5 feet	25.0	97.6
Boring B-3 @ 30-31.5 feet	25.8	-
Boring B-3 @ 35-36.5 feet	24.3	-
Boring B-3 @ 45-46.5 feet	23.7	-
Boring B-3 @ 55-56.5 feet	20.4	-

RESULTS OF MOISTURE CONTENT AND DENSITY TESTS (ASTM D2216)

N|V|5

Sample Location	Moisture Content (percent)	Dry Density (pounds per cubic foot)
Boring B-3 @ 60-61.5 feet	23.3	-
Boring B-3 @ 70-71.5 feet	28.0	-
Boring B-4 @ 5-6.5 feet	23.9	-
Boring B-4 @ 11-11.5 feet	27.4	94.6
Boring B-4 @ 15-16.5 feet	20.0	-

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

Particle-size Distribution Tests

An evaluation of the grain-size distribution of selected soil samples was performed in general accordance with the latest version of ASTM D-422 (including –200 wash). These test results were utilized in evaluating the soil classifications in accordance with the Unified Soil Classification System. Particle size distribution test results are presented on the laboratory test sheets attached in this appendix.

Atterberg Limits

Atterberg limits test was performed in accordance with ASTM D4318. This test was useful in classification of the soil. Test results are attached in this appendix.

Expansion Index

Expansion index test was performed in accordance with ASTM D4829. This test was useful in evaluating the potential expansion of the soil. Test results are attached in this appendix.

Maximum Density

Maximum density test was performed in accordance with ASTM D1557. This test was useful in evaluating the compaction of the soil in the field. Test results are attached in this appendix.

N|V|5

R Value

R Value test was performed in accordance with ASTM D2844. This test was useful in evaluating the response of the compacted soil. Test results are attached in this appendix.

Soil Corrosivity Tests

Soluble sulfate, chloride, resistively and pH tests were performed in accordance with California Test Methods 643, 417 and 422 to assess the degree of corrosivity of the subgrade soils with regard to concrete and normal grade steel. The results of the test are presented in the following table and attached in this appendix.

RESULTS OF CORROSIVITY TESTS	
(CTM 417, CTM 422)	

Location	рН	Resistivity (ohm-cm)	Sulfate (ppm)	Chloride (ppm)
B3, 10-11.5	8.7	900	170	32

Direct shear

A direct shear test was performed on a representative undisturbed sample in accordance with ASTM D3080 to evaluate the shear strength characteristics of the onsite materials. The test method consists of placing the soil sample in the direct shear device, applying a series of normal stresses, and then shearing the sample at the constant rate of shearing deformation. The shearing force and horizontal displacements are measured and recorded as the soil specimen is sheared. The shearing is continued well beyond the point of maximum stress until the stress reaches a constant or residual value. The results of the tests are presented in the following table and attached in this appendix.

RESULTS OF DIRECT SHEAR TEST
(ASTM D3080)

Location	Peak Angle of Internal Friction (degrees)	Peak Cohesion Intercept (psf)	Notes
B2, 21-21.5	24	650	-
B2, 41-41.5	33	121	-
B2, 61-61.5	33	347	-
B3, 16-16.5	22	385	-

Location	Peak Angle of Internal Friction (degrees)	Peak Cohesion Intercept (psf)	Notes
B3,41-41.5	33	120	-
B3,66-66.5	35	61	-

NV5

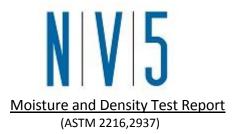
Moisture and Density Test Report (ASTM 2216,2937)

Date:May 05, 2016Client:County of ImperialAddress:1002 State StreetEl Centro, CA 92243Project:Dogwood Road Bridge ReplacementProject Add:El Centro, CA

 Job Number:
 22816-00103 PH2 T2.2

 Report Number:
 4264

 Lab Number:
 112657-112675


Sampled By:Sean RoyDate Rcvd:3/28/16

Lab Number	112657	112658	112659	112677	112678
Exploration No.	B1-01	B1-SPT1	B1-02	B2-SPT1	B2-SPT2
Depth, feet	6-6.5	10-11.5	15-16.5	5-6.5	15-16.5
Moisture Content, %	26.1	24.1	25.8	29.7	28.9
Dry Density, pcf.	95.7		99.8		99.3

Lab Number	112680	112681	112682	112684	112685
Exploration No.	B2-SPT3	B2-D2	B2-SPT4	B2-SPT5	B2-D4
Depth, feet	25-26.5	31-31.5	35-36.5	45-46.5	51-51.5
Moisture Content, %	29.3	27.9	23.4	23.8	24.1
Dry Density, pcf.		97.0			99.5

Lab Number	112686	112688	112689	112660	112661
Exploration No.	B2-SPT6	B2-SPT7	B2-SPT8	B3-01	B3-STP1
Depth, feet	55-56.5	65-66.5	70-71.5	6-6.5	10-11.5
Moisture Content, %	23.7	22.0	22.8	26.4	25.9
Dry Density, pcf.				94.5	

Lab Number	112663	112664	112665	11266	112668
Exploration No.	B3-SPT2	B3-D3	B3-SPT3	B3-SPT4	B3-SPT5
Depth, feet	20-21.5	26-26.5	30-31.5	35-36.5	45-46.5
Moisture Content, %	24.3	25.0	25.8	24.3	23.7
Dry Density, pcf.		97.6			

Job No:22816-00103 PH2 T2.2Job Name:Dogwood Road Bridge ReplacementClient:County of ImperialReport No:4264

Lab Number	112669	112670	112672	112673	112674
Exploration No.	B3-SPT6	B3-SPT7	B3-SPT8	B4-SPT1	B4-01
Depth, feet	55-56.5	60-61.5	70-71.5	5-6.5	11-11.5
Moisture Content, %	20.4	23.3	28.0	23.9	27.4
Dry Density, pcf.					94.6

Lab Number	112675
Exploration No.	B4-SPT2
Depth, feet	15-16.5
Moisture Content, %	20.0
Dry Density, pcf.	

Reviewed by:

REPORT OF SIEVE ANALYSIS TEST

ASTM D422 - Soil

Date: Client: Address: Project : Project Address:	May 5, 2016 County of Imper 1002 State Stree El Centro, CA 92 Dogwood Road El Centro, CA	et 2243		ment	22 3	511	Report) Number Number Number	: 4264	ļ)3 PH2
Material	CLAY (CH)										
Color	Brown										
Sample Location	B2-SPT2 @ 15-16.5 ft.										
Date Sampled	3/24/2016										
Sampled By Date Tested	Sean Roy 4/11/2016					-					
Tested By	Darrel Delgado		1								
U.S.S 4 3.5 3 2.52 1	SIEVE OPENING (INCHES) .5 1 3/4 1/2 3/4	В	 4 ∎	8 16 I I	U.S. SI	VE NUMBER 30 40	50	100	200	HYDROMETE	ĒR
100				•	•			◆ <u> </u>	-		
90											←
_붎 80											
00 00 00 00 00 00 00 00 00 00 00 00 00											
щ 60 —											
ž 50											
ш щ 40											
30											
20											
10											
0											
100	10		GRAIN SIZE (m	ım) 1				0.1			0.01
CBL	GRAVEL oarse fin	0	coarse		S medium	AND	6	ine	_	SILT or CI	LAY
Sample ID:	112678	e	coarse		mealam	7					
Sieve Size	1110/0	% Pa	assing	· · ·							
63mm (2 1/2") 50mm (2")						No		H&D = Hard & Du lecorded; N/A: N			riable
37.5mm (1 1/2")	100 100					_					
25mm (1") 19mm (3/4")	100					_					
12.5mm (1/2") 9.5mm (3/8")	100 100					_					
4.75mm (#4)	100					_					
2mm (#10) 850μm (#20)	100 100					_					
425μm (#40)	100										
250μm (#60) 150 μm (#100)	100 100					_					
75 um (#200) washµ	100								C 1		
Fineness Modulus Shape (sand & gravel)	0 0 N.R.	1				_		Respectful NV5 West,		u,	
Hardness (sand & gravel) Specific Gravity											
Coef. of Curvature (C _c)	0 5										
Coef. of Uniformity (C _U) % Gravel	27.4 0					_					
% Sand	0							Sam Koohi			
% Fines USCS Class:	100.0 CH					-		Engineerin	g Manager		
	· ··· ·		1	<u> </u>		_					

REPORT OF SIEVE ANALYSIS TEST

ASTM D422 - Soil

Date: Client: Address: Project : Project Address:		erial et	Job Number: 226816-00103 PH2 Report Number: 4264 Lab Number: 112689				
Material	clayey SAND (SC)						
Color	Brown						
Sample Location	B2-SPT8 @ 70-71.5 ft.						
Date Sampled	3/24/2016						
Sampled By Date Tested	Sean Roy 4/11/2016						
Tested By	Darrel Delgado						
	SIEVE OPENING (INCHES) I.5 1 3/4 1/2 3	/8 4 I I		ENUMBER 30 40 50 100 200 I I I I I I	HYDROMETER		
100			↑				
90							
동 80							
ын 80							
50 50							
ŭ 40							
30							
20							
10							
0 + + + + + + + + + + + + + + + + + + +	10	GRAIN SIZE (mi	m) 1	0.1	0.01		
CRI	GRAVEL		SAN	ND	SILT or CLAY		
	· · · · · · · · · · · · · · · · · · ·	ne coarse	medium	fine			
Sample ID: Sieve Size	112689	% Passing					
63mm (2 1/2") 50mm (2")				Notes: Hardness: H&D = Hard & Durable; N N.R.: Not Recorded; N/A: Not Ava			
37.5mm (1 1/2") 25mm (1")	100 100						
19mm (3/4")	100						
12.5mm (1/2") 9.5mm (3/8")	100 100						
4.75mm (#4) 2mm (#10)	100 100						
850μm (#20) 425μm (#40)	100 99						
250μm (#60)	94			-			
150 μm (#100) 75 um (#200) washμ	61 22						
Fineness Modulus Shape (sand & gravel)				Respectfully Subr NV5 West, Inc.	nitted,		
Hardness (sand & gravel) Specific Gravity	N.R.			1			
Coef. of Curvature (C _c)	25.0			1			
Coef. of Uniformity (C _u) % Gravel	0			·			
% Sand % Fines				Sam Koohi, PE Engineering Man	ager		
USCS Class:				Engineering wan	- U -		

15092 Avenue of Science Suite 200 - San Diego, CA 92128 - www.NV5.com - Office 858.385.0500 - Fax 858.715.5810 CQA - Infrastructure - Energy - Program Management - Environmental

REPORT OF SIEVE ANALYSIS TEST

ASTM D422 - Soil

Date: Client: Address: Project : Project Address:		rial et	nent		
Material	clayey SAND (SC)				
Color	Brown				
Sample Location	B3-SPT4 @ 35-36.5 ft.				
Date Sampled	3/24/2016 Sean Roy				
Sampled By Date Tested	4/11/2016				
Tested By	Darrel Delgado			E NUMBER	HYDROMETER
	SIEVE OPENING (INCHES) 1.5 1 3/4 1/2 3/4	8 4	8 16 3		
100					
90					
00 40 40 40 40 40 40 40 40 40 40 40 40 4					
ни бо					
30					
20					
10					
100	10	GRAIN SIZE (mr	m) 1	0.1	0.01
CBL	GRAVEL fin	ie coarse	SAN medium	ID fine	SILT or CLAY
Sample ID:	112666	,]	
Sieve Size 63mm (2 1/2")		% Passing		Notes: Hardness: H&D = Hard & Dura	ble: W&F = Weathered & Friable
50mm (2") 37.5mm (1 1/2")	100			N.R.: Not Recorded; N/A: No	t Available.
25mm (1")	100				
19mm (3/4") 12.5mm (1/2")	100 100				
9.5mm (3/8") 4.75mm (#4)	100 100			-	
2mm (#10) 850μm (#20)	100 100				
425µm (#40)	100				
250μm (#60) 150 μm (#100)	100 94]	
75 um (#200) washu Fineness Modulus	24 0.9			Respectfully	Submitted,
Shape (sand & gravel) Hardness (sand & gravel)	N.R.			NV5 West, I	
Specific Gravity	2.65			1	
Coef. of Curvature (C_0) Coef. of Uniformity (C_0)					
% Grave % Sand	0			Sam Koohi, F	F
% Fines	5 24.0			Engineering	
USCS Class:	SC			J	

15092 Avenue of Science Suite 200 - San Diego, CA 92128 - www.NV5.com - Office 858.385.0500 - Fax 858.715.5810 CQA - Infrastructure - Energy - Program Management - Environmental

N | V | 5

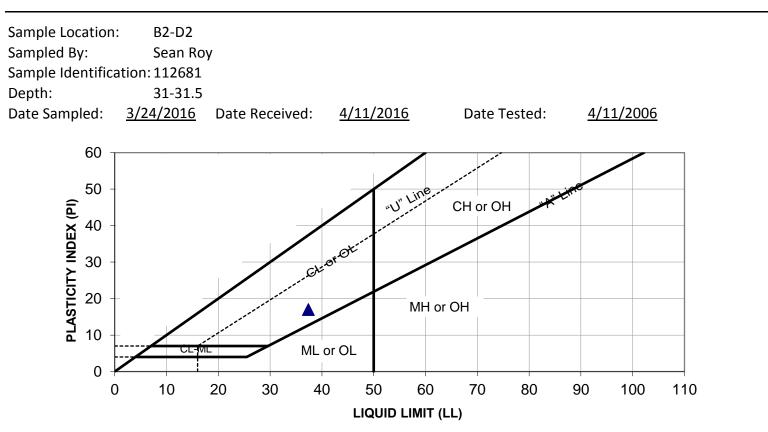
REPORT OF LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX TESTS

(ASTM 4318)

	(ASTM 4318)	
Date:	5/12/2016	Job Number: 226816-00103 PH2 T2.2
Client:	County of Imperial	Report Number: 4264
Address:	1002 State Street	Lab Number: 112664
	El Centro, CA 92243	
Project :	Dogwood Road Bridge Replacement	
Project Address :	El Centro, CA	

Sample Location: Sampled By: Sample Identification Depth: Date Sampled: <u>3/24</u>	26-26.5	Date Reco	eived: <u>4/:</u>	<u>11/2016</u>	<u>.</u>	C	Date Tes	ted: <u>4/</u>	11/2006	
60 50 40 30 20 10 0	CL-WIL 10 20		ML or OL		MH or 0 60	70	80	90	100	110

SUMMARY OF TEST RESULTS


SAMPLE ID	SOURCE /	DEPTH/	%>#40	Т	EST RESUI	T		USCS
SAIVIPLE ID	LOCATION	ELEV.	<i>7</i> 0 > #40	LL	PL	PI	Class	Group Name
112664	B3-D3	26-26.5		39	16	23	CL	lean CLAY

Reviewed By:

N V 5

REPORT OF LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX TESTS

(ASTM 4318)	
5/12/2016	Job Number: 226816-00103 PH2 T2.2
County of Imperial	Report Number: 4264
1002 State Street	Lab Number: 112681
El Centro, CA 92243	
Dogwood Road Bridge Replacement	
El Centro, CA	
	5/12/2016 County of Imperial 1002 State Street El Centro, CA 92243 Dogwood Road Bridge Replacement

SUMMARY OF TEST RESULTS

SAMPLE ID	SOURCE /	DEPTH/	%>#40	Т	EST RESUI	_T		USCS
SAIVIPLE ID	LOCATION	ELEV.	<i>7</i> 0 > #40	LL	PL	PI	Class	Group Name
112681	B2-D2	31-31.5		37	20	17	CL	lean CLAY

Reviewed By:

N|V|5

EXPANSION INDEX TEST

(ASTM D4829)

Job Number: 226816-00103 PH2 T2.2

May 5, 2016 Date: Client: County of Imperial Report Number: 4264 Address: 1002 State Street El Centro, CA 92243 Project: Dogwood Road Bridge Replacement Project Add: El Centro, CA

Sampled By:	Sean Roy
Date Received:	3/28/16

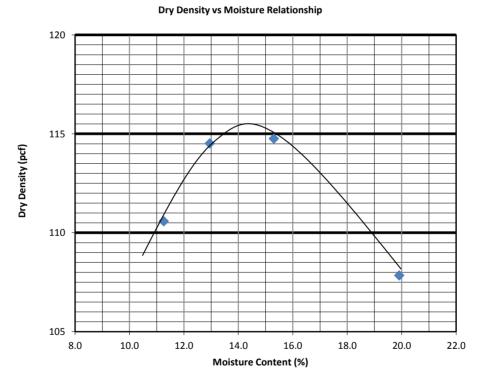
6

Lab Number	112676
Location	0-5 ft. Depth
Sample No.	B1
Initial Moisture Content, %	11.6
Final Moisture Content, %	23.8
Dry Density, pcf	105.1
Saturation, %	51.8
Expansion Index	68
Potential Expansion	Medium

Respectfully submitted, NV5 West, Inc.

N | V | 5

REPORT OF MOISTURE/DENSITY RELATIONSHIP TEST


(ASTM D1557/D698)

Date: May 5, 2016 Client: County of Imperial Address: 1002 State Street El Centro, CA 92243

Job Number: 226816-00103 Report Number: 4264 Lab Number: 112690

Project:	Dogwood Road Bridge Replacement
Project Address:	El Centro, CA
Material:	Brown CLAY (CH)
Location:	B4 at 0-5ft
Date Sampled:	3/24/16
Sampled By:	Sean Roy

Maximum Dry Density = 115.5 pcf

Distribution

Client File

Reviewed By:

Sam Koohi, PE Engineering Manager

Optimum Mo

Mold Size:6inchASTM D1557C

Optimum Moisture = 14.5%

NV5

RESISTANCE "R" VALUE TEST

(CTM301 Caltrans / ASTM D2844)

Date:	5/5/2016
Client:	County of Imperial
Address:	P.O. Box 129007
	El Centro, CA 92243
Project :	Dogwood Road Bridge Replacement
Project Address :	El Centro, CA

Job Number: 22816-00103 PH2 Report Number: 4264 Lab Number: 112676 Boring No./Depth: B1, 0-5'

2.0 100 1.9 95 1.8 90 Cover Thickness By Stabilometer,(ft) 1.7 85 1.6 80 1.5 75 1.4 70 1.3 65 1.2 60 1.1 55 1.0 50 0.9 45 0.8 40 0.7 35 0.6 30 0.5 25 0.4 20 0.3 15 0.2 10 0.1 5 0.0 0 0.0 0.1 0.2 0.3 0.5 0.6 0.8 0.9 1.0 1.2 1.3 1.5 1.6 1.7 1.8 1.9 2.0 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0.4 0.7 :-0 Cover Thickness by Expansion Pressure (ft) Exudation Presure (psi)

TEST SPECIMEN	А	В	С	D
COMP. FOOT PRESSURE, psi	70	100	165	
INITIAL MOISTURE %	2.8	2.8	2.8	
MOISTURE @ COMPACTION %	14.8	13.1	11.4	
DRY DENSITY, pcf	112.3	115.6	120.4	
EXUDATION PRESSURE, psi	219	373	545	
STABILOMETER VALUE 'R'	7	9	16	

R-VALUE BY EXUDATION	8
R-VALUE BY EXPANSION	15
R-VALUE AT EQUILIBRIUM	8

Respectfully Submitted, **NV5 West, Inc.**

Sam Koohi, PE Engineering Manager

15092 Avenue of Science Suite 200 | San Diego, CA 92128 | www.NV5.com | Office 858.385.0500 | Fax 858.715.5810 Construction Quality Assurance · Infrastructure · Energy · Program Management · Environmental

EXPANSION PRESSURE CHART

EXUDATION PRESSURE CHART

NV5

RESISTANCE "R" VALUE TEST

(CTM301 Caltrans / ASTM D2844)

Date: Client:	5/5/2016 County of Imperial
Address:	P.O. Box 129007
Address.	El Centro, CA 92243
Project :	Dogwood Road Bridge Replacement
Project Address :	El Centro, CA

Job Number: 22816-00103 PH2 Report Number: 4264 Lab Number: 112690 Boring No./Depth: B4, 0-5'

2.0 100 1.9 95 1.8 90 Cover Thickness By Stabilometer,(ft) 1.7 85 1.6 80 1.5 75 1.4 70 1.3 65 1.2 60 1.1 55 1.0 50 0.9 45 0.8 40 0.7 35 0.6 30 0.5 25 0.4 20 0.3 15 0.2 10 0.1 5 0.0 0 0.0 0.1 0.2 0.3 0.5 0.6 0.8 0.9 1.0 1.2 1.3 1.5 1.6 1.7 1.8 1.9 2.0 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0.4 0.7 :-0 Cover Thickness by Expansion Pressure (ft) Exudation Presure (psi)

TEST SPECIMEN	А	В	С	D
COMP. FOOT PRESSURE, psi	160	105	85	60
INITIAL MOISTURE %	2.8	2.8	2.8	2.8
MOISTURE @ COMPACTION %	14.0	15.7	17.4	20.0
DRY DENSITY, pcf	114.0	110.5	107.8	102.1
EXUDATION PRESSURE, psi	623	541	454	279
STABILOMETER VALUE 'R'	14	11	7	5

R-VALUE BY EXUDATION	5
R-VALUE BY EXPANSION	0
R-VALUE AT EQUILIBRIUM	5

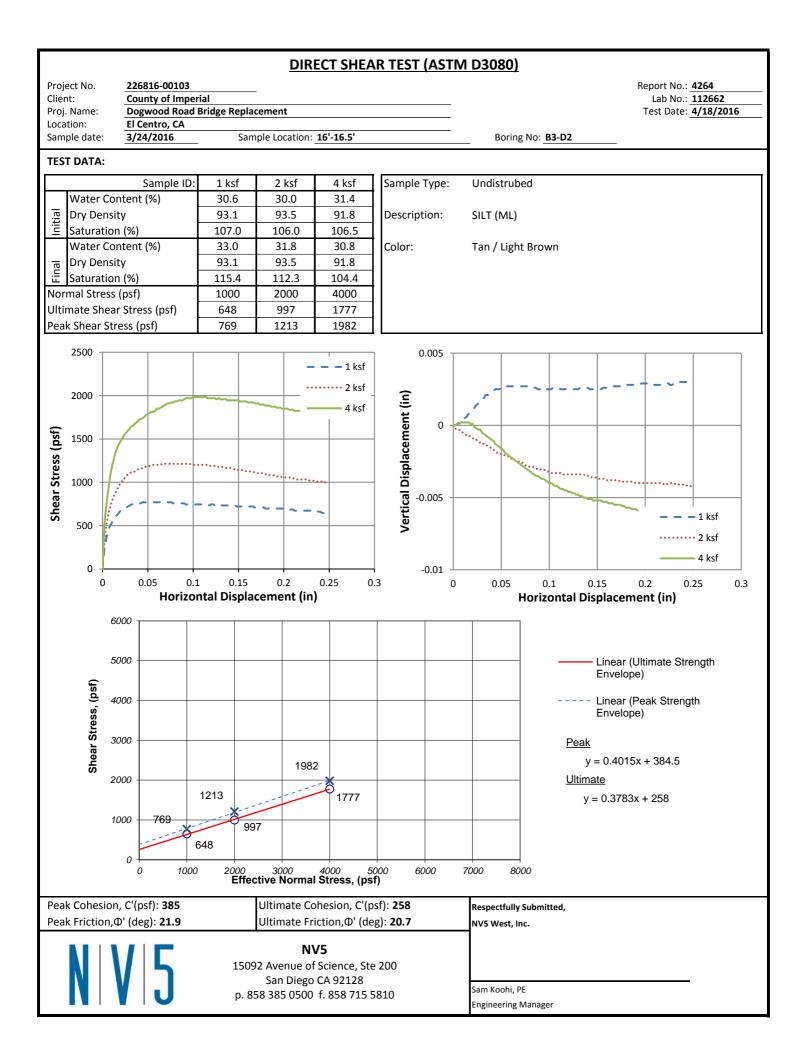
Respectfully Submitted, **NV5 West, Inc.**

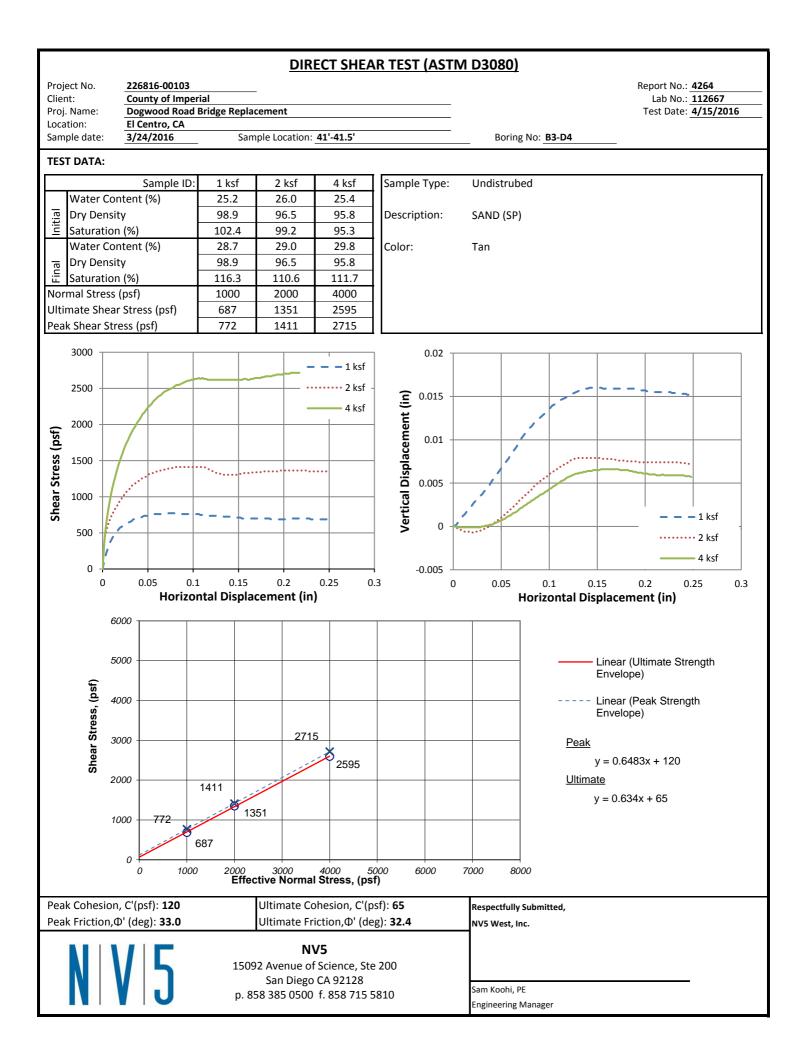
Sam Koohi, PE Engineering Manager

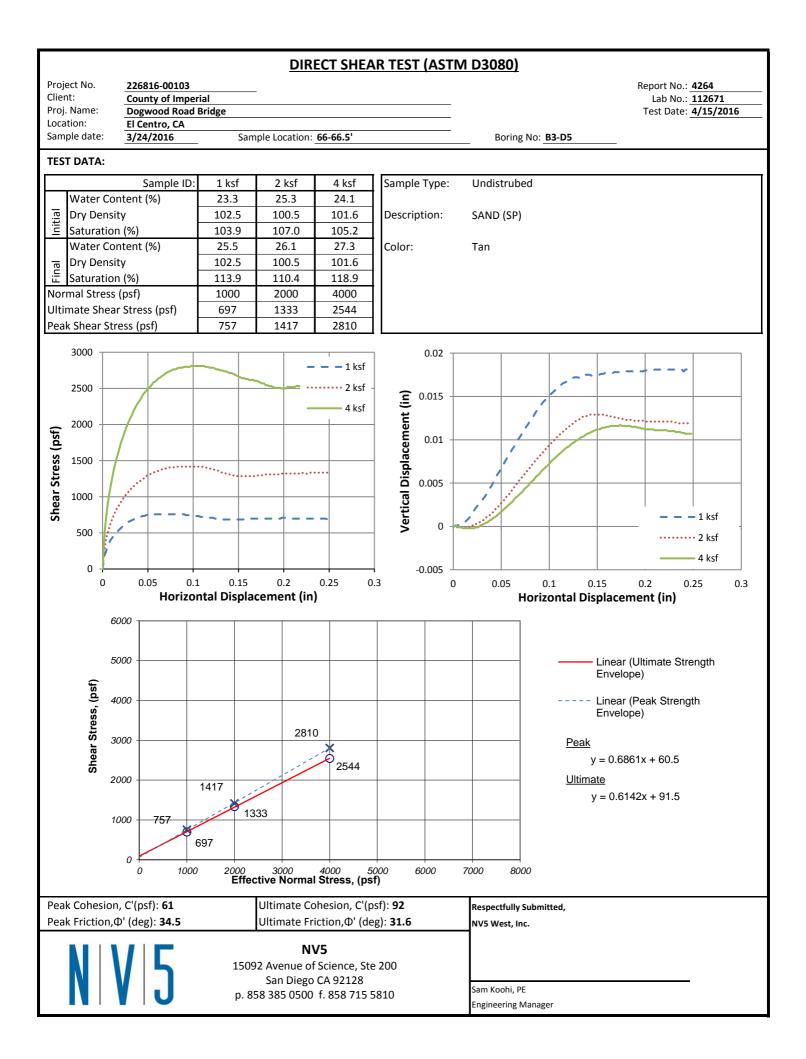
 15092 Avenue of Science Suite 200 | San Diego, CA 92128 | www.NV5.com | Office 858.385.0500 | Fax 858.715.5810

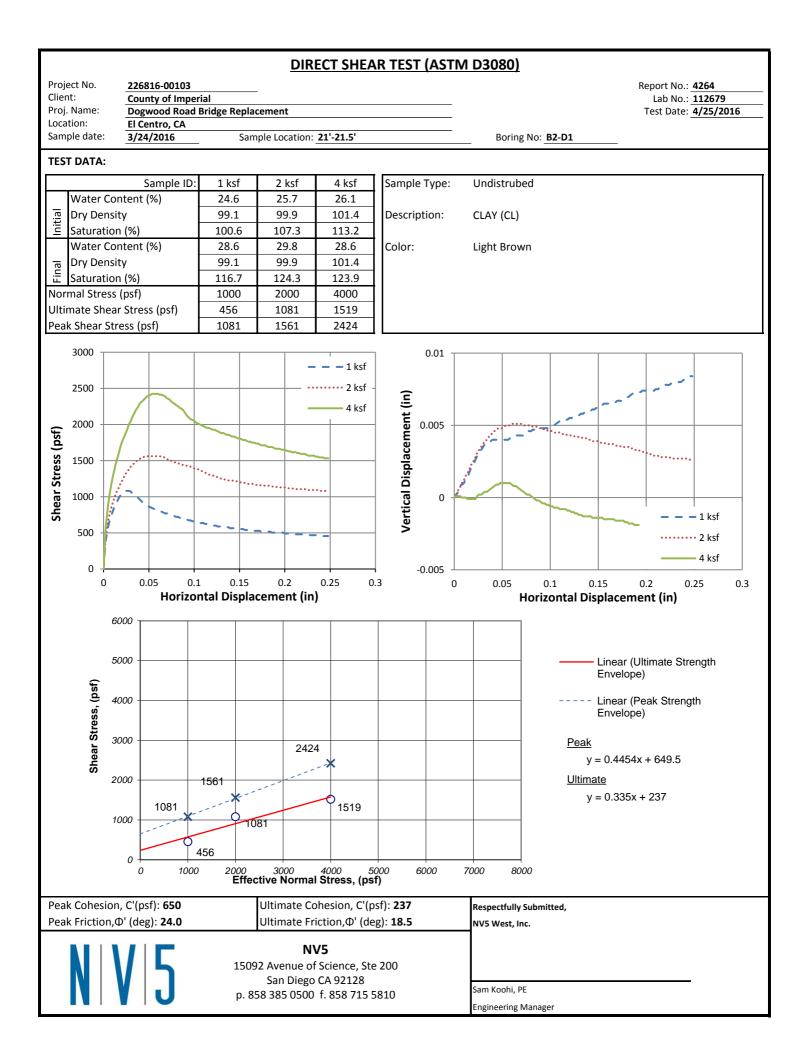
 Construction Quality Assurance · Infrastructure · Energy · Program Management · Environmental

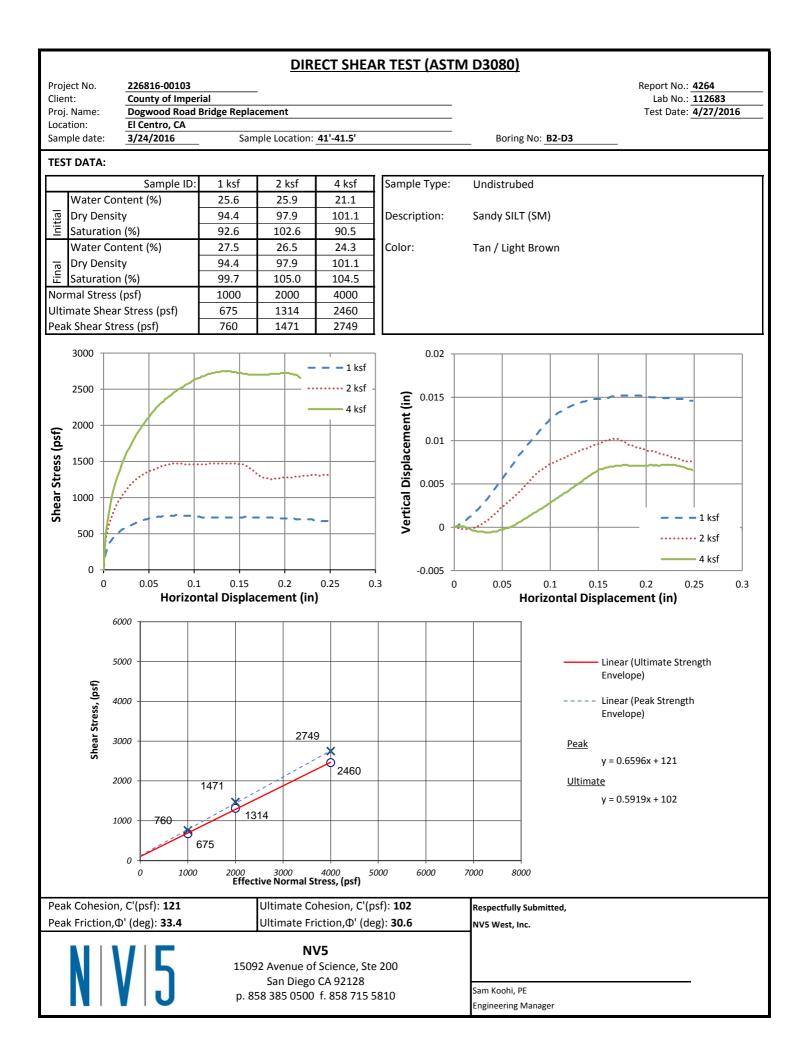
EXPANSION PRESSURE CHART

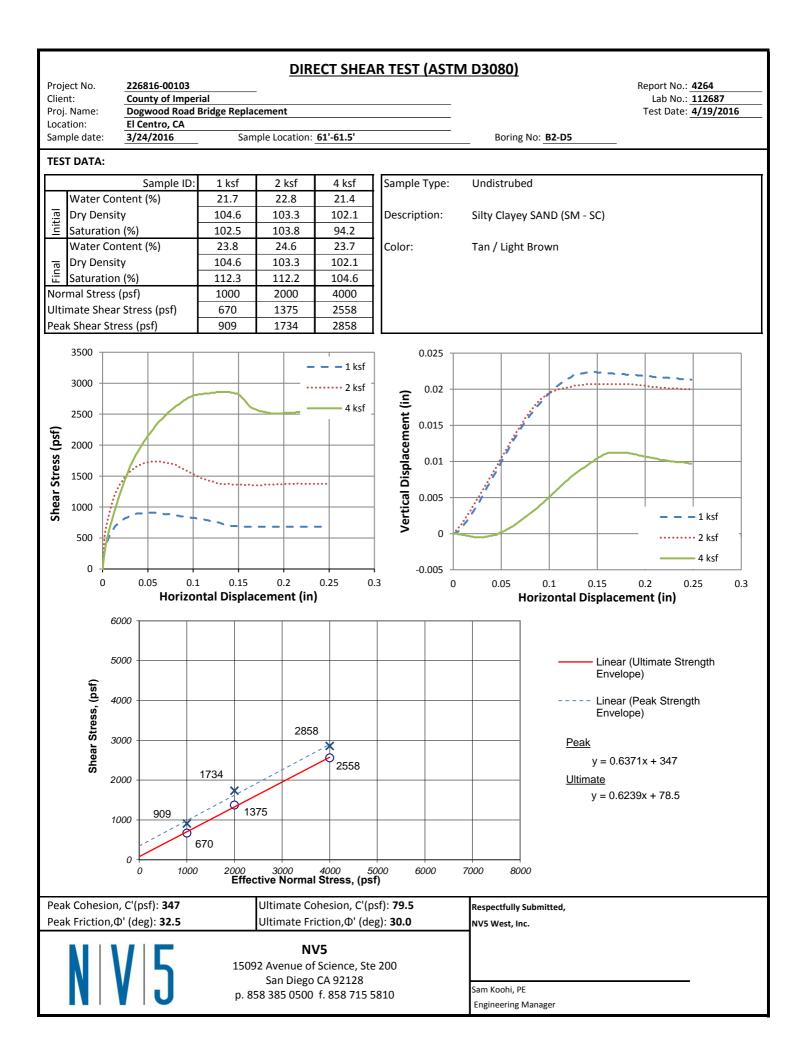

EXUDATION PRESSURE CHART


Telephone (619) 425-1993 Fax 425-7917 Established 1928 CLARKSON LABORATORY AND SUPPLY INC. 350 Trousdale Dr. Chula Vista, Ca. 91910 www.clarksonlab.com ANALYTICAL AND CONSULTING CHEMISTS Date: April 14, 2016 Purchase Order Number: 16-0361 Sales Order Number: 30906 Account Number: NV5.SD To: *_____* NV5 West Inc 15092 Avenue of Science #200 San Diego, CA 92128 Attention: Michelle Albrecht Laboratory Number: S05967 Customers Phone: 858-715-5800 Fax: 858-715-5810 Sample Designation: *_____* One soil sample received on 04/07/16 at 3:00pm, taken on 04/07/16 from Dogwood Road Bridge Job# 226816-00103 marked as B3-SPT 1 @ 10-11.5' Lab# 112661. Analysis By California Test 643, 1999, Department of Transportation Division of Construction, Method for Estimating the Service Life of Steel Culverts. рН 8.7 Water Added (ml) Resistivity (ohm-cm) 10 7200 5 4000 5 2900 5 1600 5 940 5 900 5 940 5 980 29 years to perforation for a 16 gauge metal culvert. 38 years to perforation for a 14 gauge metal culvert. 53 years to perforation for a 12 gauge metal culvert. 67 years to perforation for a 10 gauge metal culvert. 82 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate Calif. Test 417 0.017% (170ppm)


0.003% (32ppm)

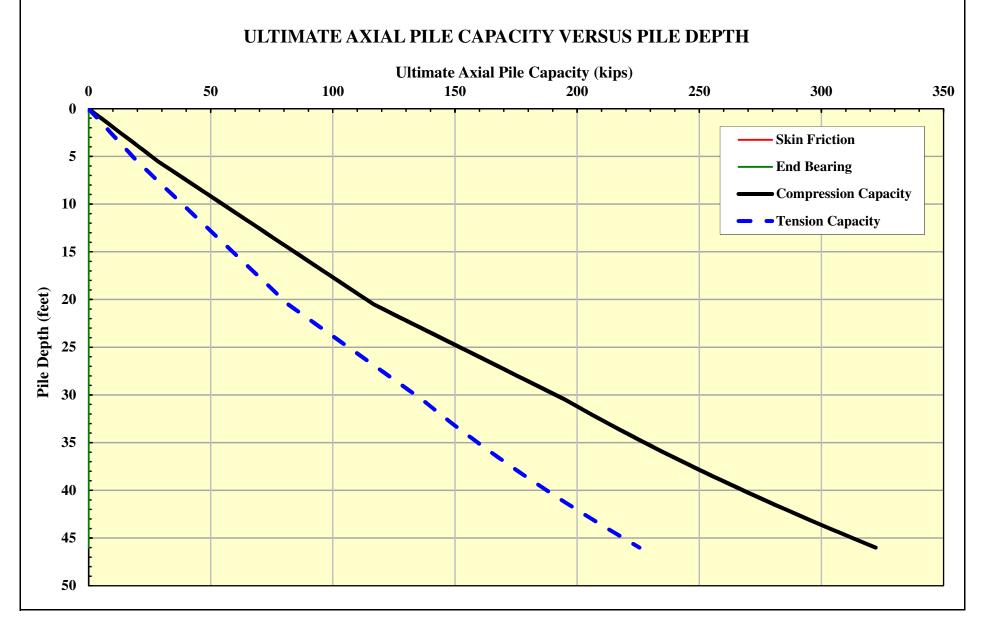

Water Soluble Chloride Calif. Test 422

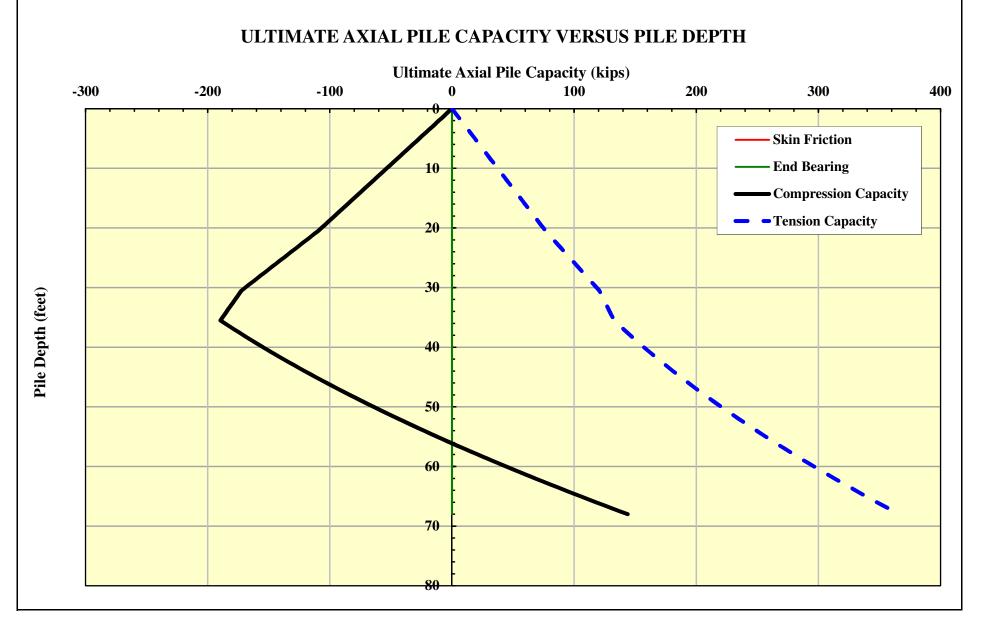

Laura Torres LT/ilv

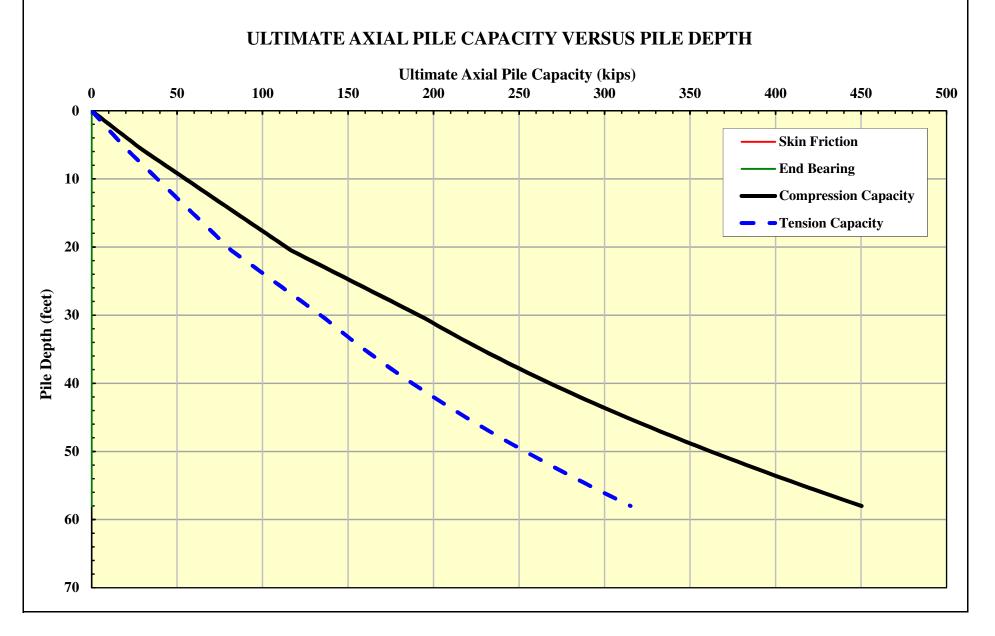


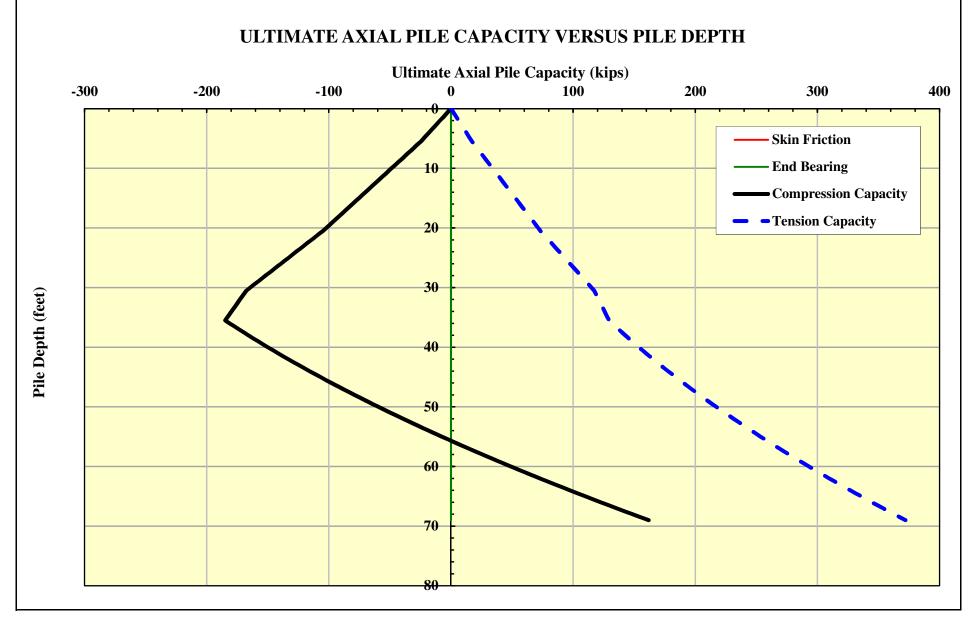
Appendix D

Pile Design


	PILE DATA TABLE											
			NOMINAL RESI	STANCE (KIPS)								
LOCATION	PILE TYPE	DESIGN LOADING (SERVICELOAD,KIPS)	COMPRESSION	TENSION	CUT-OFF ELEVATIONS (FT.)	DESIGN TIP ELEVATIONS (FT.)	SPECIFIED TIP ELEVATIONS (FT.)					
ABUTMENT	CISS 30X0.5	160	320	0	994.42	948(a) 984(b) 933(c) 927(d)	927					
PIER	CISS 30X0.5	220	440	0	994.42	937(a) 979(b) 928(c) 925(d)	925					


NOTES:


1. DESIGN TIP ELEVATIONS ARE CONTROLLED BY: (a) COMPRESSION , (b) TENSION , (c) LATERAL, (d) LIQUEFACTION


2. SERVICE LOADS AND DESIGN TIP ELEVATION FOR LATERAL LOAD ARE TYPICALLY PROVIDED BY SD.

3. ESTIMATED DOWNDRAG FORCE PER PILE DUE TO LIQUEFACTION IS 185 KIPS.

Appendix E

Liquefaction Analysis

SIMPLIFIED LIQUEFACTION HAZARDS ASSESSMENT USING STANDARD PENETRATION TEST (SPT) DATA

PRO IEG	T INFORM		1									1																
-	T INFORM	IATION				-		SUN	AMARY C	OF RESU	LTS																	1
Project N			Dogwood Roa		eplacement o	over Central	i Main Canal																					
Project N			226816-00103						of Liquefac																			
Project L	ocation		Imperial Coun	ty, Californ	nia			Cumula	tive Thickn	ess of Liq.	Soils, H _{liq} :	5.00 f	feet (cun	nulative to	tal thickness ir	the upper 65	feet)											
Analyzed	By		Carlos Amante	e				Liquefac	ction Potent	tial Index (LPI):	3.81	*** (Lov	w risk, wit	h minor liquefa	ction effects)												
Reviewed	l By		Sam Koohi																				_					
								Seismic Se	ettlements:				Analy	ysis Metho	od	Upper	30 feet	Uppe	er 50 feet	Upper	r 65 feet							
SITE CO	NDITIONS	5						Seismic	Compressio	on Settleme	ent:	Pradel (19	998)			0.00	inches	0.00	inches	0.00	inches		_					
Boring No	0.		B-2					Liquefac	ction-Induce	ed Settleme	ent:	Idriss and	l Boulang	ger (2008)		0.00	inches	1.59	inches	1.59	inches							
Ground S	Surface Eleva	tion	996.00	feet				Total Se	eismic Settle	ement:		-				0.00	inches	1.59	inches	1.59	inches		-					
	Grade Eleva		996.00																									
•	ohic Site Cond				und with No N	Jearby Free I	Face)	Seismic La	ateral Displ	acements.		-	Analy	vsis Metho	od	Unner	30 feet	Unne	er 50 feet	Unner	65 feet		-					
	nd Slope, S		0.00				,		ateral Displa			Tokimatsu					inches		inches		inches		-					
	Face (L/H) R								Spreading Di						<i>'</i>		inches											
			N/A					Lateral	Spreading D	ispiacement		Zhang et a	al. (2004	•)		0.00	inches	0.00	inches	0.00	inches							J
	al Unit Weigh		125.00	-																								
GWL De	pth Measured	d During Test	5.00	feet				NOT	'ES AND I	REFERE	NCES																	
GWL De	pth Used in D	Design	5.00	feet																								
Borehole	Diameter		6.00	inches				+ This m	ethod of ana	alysis is ba	sed on obser	rved seismid	c perform	nance of le	evel ground site	s using corre	lation with	normalized	and fines-corr	rected SP1	f blow cour	nt, (N1)60cs	$= f\{(N_1)_{60}, FC\}$	where (N1)	$_{60} = N_{field} C_{field}$	$C_E C_B C_R C_S$		
Hammer	Weight		140.00	pounds				++ Based of	on criteria f	or liquefact	tion suscepti	ibility scree	ening sele	ected by th	he user.													
Hammer	Drop		30.00	inches																								
		ciency Ratio, ER	82.00					* FS =	Factor of Sa	afety agains	st liquefactio	on = (CRR)	(CSR). v	where CRR	R = CRR _{7.5} MS	Ka Ka . MS	SF = Magni	tude Scaling	Factor, K. =	fl(N ₁)en	σ',,,], K., =	.0, (level	ground),					
		Ground Surface	5.00												lic Resistance													
initer			5.00												h post-earthqua													
	BROKON	D. D	٦						-		-				n post-earinqu	ke, normanzo	ed and filles	s-corrected 5	FT DIOW COUL	it derived	by fulliss a	iu boulali	ger (2008).					
		PARAMETERS						*** Based	on Iwasaki	et al. (1978	and Topra	ak and Holz	zer (2003	5)														
-		Magnitude, M _w	6.70																									
Peak Gro	ound Accelera	ation, A _{max}	0.65	g				+ Referen	ce: Boulang	er, R.W. a	nd Idriss. Ll	M. (2014).	"CPT an	nd SPT Ba	sed Liquefactio	n Triggering	Procedures	" University	of California	a Davis. C	enter for G	eotechnic:	al Modeling Repo	rt No. UCI	D/CGM-14/	01. 1-134.		
Site to Sei	ismic Source	Distance, R	6.10	miles						,,	,	(,						,								,		
		SOL	L PROFILE I	лата						LIQUER	ACTION	TRICCE	PINC	ANAL VS	SIS BASED	NPWR	DUI ANC	FD AND I	M IDDISS	(2014) N	летног	-		Residual	Seismic	Cumulative	Cumulative	Cumulative
Bottom of	Soil	Material Type	Liquefaction	Total Soil	Field	Type of	Fines	Total		SPT Corr.	SPT	SPT	SPT	SPT	Corrected SPT	Normalized	Fines	Shear	Correction	Cyclic	Cyclic	Factor of	Liquefaction	Shear	Porewater	Seismic	Cyclic Lateral	Lateral
Soil Layer	Depth		Susceptibility	Unit	SPT Blow	Soil	Content	Vert.	Vert.	For	Corr.	Corr.	Corr.	Corr.	Blow Count	SPT Blow	Corrected	Stress	for High	Stress	Resistance	Safety	Analysis	Strength	Pressure Ratio	Settlement	Displacement	Spreading Displacement
Elevation	During Test	USCS	Screening ++	Weight	Count	Sampler		Stress	Stress	Vert.	For	For	For										Results	**			-	
								(Design)	(Design)	Stress	Hammer			For Sampling		Count	SPT Blow Count	Reduction	Overburden Stress	Ratio	Ratio		Results	**				
		Group Symbol	Susceptible					(Design)	(Design)	Stress	Hammer Energy	Borehole Size	Rod Length	Sampling Method			Count	Coefficient	Stress			*	Results	s,	r,			
(feet)	(feat)	Group Symbol (ASTM D2487)		¥.	N _{field}		FC	G vo	σ'	Stress C _N		Borehole	Rod	Sampling	N ₆₀	Count (N1)60				Ratio CSR	Ratio CRR	* FS _{Eq}	Results	$\mathbf{S}_{\mathbf{r}}$	r _u	(inches)	(inches)	(inches)
(feet)	(feet)	(ASTM D2487)	Susceptible Soil? (Y/N)	(pcf)	N _{field} (blows/ft)	SPT1	FC (%)	σ _{ro} (psf)	σ ' _{vo} (psf)		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d	Stress	CSR		* FS _{Eq}		S _r (psf)	r _u (%)	(inches)	(inches)	(inches)
991.00	2.50	(ASTM D2487) CL-ML	Susceptible Soil? (Y/N) N	(pcf) 125.00		SPT1		G ₁₀ (psf) 312.50	G ' _{vo} (psf) 312.50		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00	Stress	CSR 0.42		* FS _{Eq}	(NL: Dry Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59	1.33	0.00
991.00 988.50	2.50 6.25	(ASTM D2487) CL-ML CH	Susceptible Soil? (Y/N) N N	(pcf) 125.00 125.00		SPT1		© ₁₀ (psf) 312.50 781.25	d 'vo (psf) 312.50 703.25		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00 0.99	Stress	CSR 0.42 0.46		* FS _{Eq}	(NL: Dry Soil) (NL: Clay-rich Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59 1.59	1.33 1.33	0.00
991.00 988.50 983.50	2.50 6.25 10.00	(ASTM D2487) CL-ML CH CH	Susceptible Soil? (Y/N) N N N	(pcf) 125.00 125.00 125.00		SPT1 SPT1		G _{vo} (psf) 312.50 781.25 1,250.00	d ' _{vo} (psf) 312.50 703.25 938.00		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00 0.99 0.97	Stress	CSR 0.42 0.46 0.55		* FS _{Eq}	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59 1.59 1.59	1.33 1.33 1.33	0.00 0.00 0.00
991.00 988.50	2.50 6.25	(ASTM D2487) CL-ML CH CH CH CH	Susceptible Soil? (Y/N) N N	(pcf) 125.00 125.00		SPT1 SPT1 SPT1		© ₁₀ (psf) 312.50 781.25	d 'vo (psf) 312.50 703.25		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00 0.99	Stress	CSR 0.42 0.46		* FS _{liq}	(NL: Dry Soil) (NL: Clay-rich Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59 1.59	1.33 1.33	0.00
991.00 988.50 983.50	2.50 6.25 10.00	(ASTM D2487) CL-ML CH CH	Susceptible Soil? (Y/N) N N N	(pcf) 125.00 125.00 125.00		SPT1 SPT1		G _{vo} (psf) 312.50 781.25 1,250.00	d ' _{vo} (psf) 312.50 703.25 938.00		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00 0.99 0.97	Stress	CSR 0.42 0.46 0.55		* FS _{Eq}	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59 1.59 1.59	1.33 1.33 1.33	0.00 0.00 0.00
991.00 988.50 983.50 978.50	2.50 6.25 10.00 15.00	(ASTM D2487) CL-ML CH CH CH CH	Susceptible Soil? (Y/N) N N N N	(pcf) 125.00 125.00 125.00 125.00		SPT1 SPT1 SPT1		G ₁₀ (psf) 312.50 781.25 1,250.00 1,875.00	d' _{v0} (psf) 312.50 703.25 938.00 1,251.00		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00 0.99 0.97 0.95	Stress	CSR 0.42 0.46 0.55 0.60		* FS _{Eq}	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59 1.59 1.59 1.59	1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00
991.00 988.50 983.50 978.50 973.50	2.50 6.25 10.00 15.00 20.00	(ASTM D2487) CL-ML CH CH CH CH CL	Susceptible Soil? (Y/N) N N N N N	(pcf) 125.00 125.00 125.00 125.00 125.00		SPT1 SPT1 SPT1 SPT1		Gro (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 2,500.00	σ'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00 0.99 0.97 0.95 0.92	Stress	CSR 0.42 0.46 0.55 0.60 0.62		* FS _{Eq}	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59 1.59 1.59 1.59 1.59	1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00
991.00 988.50 983.50 978.50 973.50 968.50	2.50 6.25 10.00 15.00 20.00 25.00	(ASTM D2487) CL-ML CH CH CH CL CL CL	Susceptible Soil? (Y/N) N N N N N	(pcf) 125.00 125.00 125.00 125.00 125.00 125.00		SPT1 SPT1 SPT1 SPT1 SPT1		G ₁₀ (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00	σ' ₁₀ (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00		Energy	Borehole Size	Rod Length	Sampling Method	N ₆₀		Count	Coefficient r _d 1.00 0.99 0.97 0.95 0.95 0.92 0.89	Stress	CSR 0.42 0.46 0.55 0.60 0.62 0.63		* FS _{Eq}	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil)	$\mathbf{S}_{\mathbf{r}}$		1.59 1.59 1.59 1.59 1.59 1.59	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00
991.00 988.50 983.50 978.50 973.50 968.50 968.50 963.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC	Susceptible Soil? (Y/N) N N N N N N Y	(pcf) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%)	Grow (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00	d've (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00	C _N	Energy C _E	Borchole Size CB CB CB CB CB CB CB CB CB CB CB CB CB	Rod Length C _R	Sampling Method Cs	20.1	(N ₁) ₆₀	Count (N ₁) _{60cs}	Coefficient r _d 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83	Stress Kg 0.97	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) LLQUEFY	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 978.50 973.50 968.50 963.50 958.50 953.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00	CL-ML CH CH CH CH CL CL CL CL CL CL SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y	(pcf) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	G ₁₀ (pst) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00	d've (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _d 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.83 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60	CRR		(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) LIQUEFY (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%)	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borchole Size CB CB CB CB CB CB CB CB CB CB CB CB CB	Rod Length C _R	Sampling Method Cs	20.1	(N ₁) ₆₀	Count (N ₁) _{60cs}	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress Kg 0.97	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 978.50 973.50 968.50 963.50 958.50 953.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00	CL-ML CH CH CH CH CL CL CL CL CL CL SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y	(pcf) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	G ₁₀ (pst) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00	d've (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _d 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.83 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) LIQUEFY (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 968.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 978.50 973.50 968.50 963.50 958.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 978.50 973.50 968.50 963.50 958.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 978.50 973.50 968.50 963.50 958.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 973.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 973.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 973.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
991.00 988.50 983.50 973.50 973.50 968.50 963.50 953.50 953.50 948.50	2.50 6.25 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00	(ASTM D2487) CL-ML CH CH CH CL CL CL CL CL CH SC SC SC	Susceptible Soil? (Y/N) N N N N N N N N Y Y Y Y	(pef) 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	(blows/ft)	SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1 SPT1	(%) 22.00 22.00	Gw (psf) 312.50 781.25 1,250.00 1,875.00 2,500.00 3,125.00 3,750.00 4,375.00 5,000.00 5,625.00	d [*] ve (psf) 312.50 703.25 938.00 1,251.00 1,564.00 1,877.00 2,190.00 2,503.00 2,816.00 3,129.00	C _N	Energy C _E	Borehole Size C _B 	Rod Length C _R 	Sampling Method Cs 	20.1 31.6	(N1)60 18.1 27.7	Count (N1)60cs 22.9 32.5	Coefficient r _a 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.80 0.80	Stress K ₀	CSR 0.42 0.46 0.55 0.60 0.62 0.63 0.62 0.61 0.60 0.58	CRR	0.46	(NL: Dry Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Clay-rich Soil) (NL: Dense Soil) (NL: Dense Soil)	S _r (psf)	(%)	1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 0.36 0.00	1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

SIMPLIFIED LIQUEFACTION HAZARDS ASSESSMENT USING STANDARD PENETRATION TEST (SPT) DATA

(Copyright © SPTLIQ Version 6.0, InfraGEO Software, All Rights Reserved)

(Licensed to: NV5 West, Inc. - Irvine, California)

Project Na	- Ind OKW	MATION						SUM	IMARY (JF RESU	L15																	_
1 roject Na	ame		Dogwood Road	l Bridge Re	placement or	ver Central	Main Canal																					
Project No.	0.		226816-00103	02				Severity o	of Liquefac	tion:																		
Project Lo	ocation		Imperial Coun	y, Californ	ia			Cumulat	tive Thickn	ess of Liq.	Soils, H _{liq} :	5.00 f	feet (cum	ulative tota	al thickness ir	the upper 65	feet)											
Analyzed B	By		Carlos Amante					Liquefac	ction Poten	tial Index (LPI):	3.81	*** (Low	risk, with	minor liquefa	action effects)												
Reviewed l	By		Sam Koohi																									
								Seismic Se	ettlements:				Analy	sis Metho	d	Upper	r 30 feet	Uppe	r 50 feet	Upper	65 feet							
SITE CON	NDITIONS	NS						Seismic	Compressi	on Settleme	ent:	Pradel (19	98)			0.00	inches	0.00	inches	0.00	inches							
Boring No.).		B-2					Liquefac	ction-Induc	ed Settleme	ent:	Idriss and	Boulang	er (2008)		0.00	inches	1.59	inches	1.59	inches							
Ground Su	urface Elevat	vation	996.00	feet				Total Se	eismic Settl	ement:						0.00	inches	1.59	inches	1.59	inches							
Proposed (Grade Eleva	vation	996.00	feet																								
Topograph	hic Site Cond	ondition:	TSC1	(Level Grou	ind with No N	earby Free F	ace)	Seismic La	ateral Disp	acements:			Analy	sis Metho	d	Upper	r 30 feet	Uppe	r 50 feet	Upper	65 feet							
- Groun	nd Slope, S	5	0.00	%				Cyclic L	ateral Displ	acement:		Tokimatsu	and Asa	aka (1998)		0.00	inches	1.33	inches	1.33	inches							
- Free F	Face (L/H) R	Ratio	N/A					Lateral S	Spreading D	isplacement	t:	Zhang et a	al. (2004))		0.00	inches	0.00	inches	0.00	inches							
Ave. Total	l Unit Weigh	ght of New Fill	125.00	ncf								U	. ,															
	Ū	red During Test	5.00	-				NOT	ES AND I	DEFEDE	NCES	1																
•	oth Used in D	0	5.00					ROI	Lonio	USPERE	CE5	1																
Borehole D		Design		inches				This	athod of an	olumic ic ber	ad on observ	ruad caierri	a parfo	ana of la	ual ground sit	e ucina ocean	lation with	normalized	nd fines com	nantad SD1	blow	(N)	= f{(N ₁) ₆₀ , FC	where (N	- N - C			
																es using corre	nation with	normanzeu a	ind mies-con	lected SF I	blow coul	$(1 \times 1)_{60cs}$	$= I\{(IN_1)_{60}, FC\}$	where (N ₁	$h_{60} = N_{\text{field}} C$	$_{N}C_{E}C_{B}C_{R}C_{S}$		
Hammer V	0		140.00	-				++ Based of	on criteria f	or liquetact	tion suscept	ibility scree	ening sele	ected by the	e user.													
Hammer E				inches																								
		ficiency Ratio, ER	82.00								-				= CRR _{7.5} MS		-	-	-									
	Distance to G	Country I Country on	5.00	feet				CSR = 0	Cyclic Stre	ss Ratio = (0.65 A _{max} (o	$r_{vo}/\sigma'_{vo}) r_d$,	and CRI	$R_{7.5} = Cycli$	ic Resistance	Ratio is a fun	ction of (N1)60cs and corr	ected for an o	earthquake	e magnitud	e M _w of 7.5	5.					
Hammer D		Ground Surface						** Residua	al strength	values of li	quefied soil	s are based	on correl	lation with	post-earthqua	ike, normaliz	ed and fines	s-corrected SI	PT blow cour	nt derived	by Idriss a	nd Boulang	er (2008).					
Hammer D	0 0	Ground Surface								values of fi																		
		N PARAMETERS	1								3) and Topra																	
SEISMIC	DESIGN I		6.70																									
SEISMIC Earthquak	DESIGN I	N PARAMETERS t Magnitude, M _w						*** Based o	on Iwasaki	et al. (1978	3) and Topra	ak and Holz	er (2003)														
SEISMIC Earthquak Peak Grou	C DESIGN I ke Moment 1 und Accelera	N PARAMETERS t Magnitude, M _w eration, A _{max}	0.65	g				*** Based o	on Iwasaki	et al. (1978	3) and Topra	ak and Holz	er (2003)		n Triggering	Procedures	," University	of California	ı Davis, C	enter for G	eotechnica	Modeling Rep	oort No. UC	D/CGM-14	01, 1-134.		
SEISMIC Earthquak Peak Grou	C DESIGN I ke Moment 1 und Accelera	N PARAMETERS t Magnitude, M _w eration, A _{max} ce Distance, R	0.65	g miles				*** Based o	on Iwasaki ce: Boulang	et al. (1978 ger, R.W. a	3) and Topra	ak and Holz M. (2014),	er (2003) "CPT and) d SPT Base	ed Liquefactio								l Modeling Rep				Completion	
SEISMIC Earthquak Peak Grou Site to Seis	DESIGN I ke Moment 1 und Accelera	N PARAMETERS t Magnitude, M _w eration, A _{max} ce Distance, R SOII	0.65 6.10	g miles DATA				*** Based of + Reference	on Iwasaki ce: Boulang	et al. (1978 ger, R.W. as LIQUEF	 and Topra and Idriss, I. 	ak and Holz M. (2014), TRIGGE	er (2003 "CPT and CRING 4) d SPT Base	ed Liquefactio		OULANG	ER AND I.	M. IDRISS	(2014) N	иетное	+		oort No. UC Residual Shear	D/CGM-14 Seismic Porewater	Cumulative Seismic	Cumulative Cyclic	1
SEISMIC Earthquak Peak Grou Site to Seis Bottom of	C DESIGN I ke Moment 1 und Accelera	N PARAMETERS t Magnitude, M _w eration, A _{max} ce Distance, R	0.65	g miles	Field SPT Blow	Type of Soil	Fines Content	*** Based o	on Iwasaki ce: Boulang	et al. (1978 ger, R.W. a	3) and Topra nd Idriss, I. FACTION SPT	ak and Holz M. (2014), TRIGGE SPT	CPT and CRING A) d SPT Base ANALYS SPT	ed Liquefactio	ON R.W. BO	OULANG Fines	ER AND I.					Liquefaction	Residual	Seismic Porewater Pressure	Cumulative	Cyclic Lateral	s
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} ce Distance, R SOII Material Type	0.65 6.10 L PROFILE I Liquefaction Susceptibility Screening	g miles DATA Total Soil				*** Based of + Reference Total Vert. Stress	on Iwasaki ce: Boulang Effective Vert. Stress	et al. (1978 ger, R.W. ar LIQUEF SPT Corr. For Vert.	and Topra nd Idriss, I. FACTION SPT Corr. For	M. (2014), TRIGGE SPT Corr. For	CPT and CPT and CRING A SPT Corr. For) d SPT Bass ANALYS SPT Corr. For	ed Liquefactio		OULANG Fines Corrected SPT Blow	ER AND I. Shear Stress Reduction	M. IDRISS Correction for High Overburden	(2014) N Cyclic	AETHOE Cyclic	+ Factor of		Residual Shear	Seismic Porewater	Cumulative Seismic	Cyclic	S
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera ismic Source Soil Depth	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles OATA Total Soil Unit	SPT Blow	Soil	Content	*** Based of + Reference Total Vert.	on Iwasaki ce: Boulang Effective Vert.	et al. (1978 ger, R.W. ar LIQUEF SPT Corr. For	and Topra nd Idriss, I. FACTION SPT Corr. For Hammer	M. (2014), TRIGGE SPT Corr.	CPT and CPT and CRING A SPT Corr. For Rod) d SPT Base ANALYS SPT Corr.	ed Liquefactio	ON R.W. BO Normalized SPT Blow	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress	M. IDRISS Correction for High	(2014) M Cyclic Stress	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	I Sp
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w ration, A _{max} ce Distance, R SOII Material Type USCS	0.65 6.10 L PROFILE L Liquefaction Susceptibility Screening ++	g miles OATA Total Soil Unit	SPT Blow	Soil		*** Based of + Reference Total Vert. Stress	on Iwasaki ce: Boulang Effective Vert. Stress	et al. (1978 ger, R.W. ar LIQUEF SPT Corr. For Vert.	and Topra nd Idriss, I. FACTION SPT Corr. For	M. (2014), TRIGGE SPT Corr. For Borehole	CPT and CPT and CRING A SPT Corr. For) d SPT Base ANALYS SPT Corr. For Sampling	ed Liquefactio	ON R.W. BO Normalized SPT Blow	OULANG Fines Corrected SPT Blow	ER AND I. Shear Stress Reduction	M. IDRISS Correction for High Overburden	(2014) M Cyclic Stress	AETHOE Cyclic Resistance	+ Factor of	Liquefaction Analysis	Residual Shear Strength	Seismic Porewater Pressure	Cumulative Seismic	Cyclic Lateral	Cu I Sp Disp
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	S
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	s
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	S
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	S
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	I Sp
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	I Sp
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	I Sj
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	s
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	s
SEISMIC Earthquak Peak Grou	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	s
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	s
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	s
SEISMIC Earthquak Peak Grou Site to Seis Bottom of Soil Layer	E DESIGN I ke Moment 1 und Accelera smic Source Soil Depth During	N PARAMETERS t Magnitude, M _w eration, A _{max} te Distance, R SOII Material Type USCS Group Symbol	0.65 6.10 L PROFILE E Liquefaction Susceptibility Susceptible	g miles DATA Total Soil Unit Weight	SPT Blow Count	Soil	Content	*** Based of + Reference Total Vert. Stress (Design)	er Iwasaki ce: Boulang Effective Vert. Stress (Design)	et al. (1978 ger, R.W. au LIQUEF SPT Corr. For Vert. Stress	8) and Topra nd Idriss, I. FACTION SPT Corr. For Hammer Energy	Ak and Holz M. (2014), TRIGGE SPT Corr. For Borehole Size	CPT and CPT and CPT and CPT Corr. For Rod Length) d SPT Base ANALYS SPT Corr. For Sampling Method	ed Liquefactic IS BASED (Corrected SPT Blow Count	ON R.W. BO Normalized SPT Blow Count	OULANG Fines Corrected SPT Blow Count	ER AND I. Shear Stress Reduction Coefficient	M. IDRISS Correction for High Overburden Stress	(2014) N Cyclic Stress Ratio	AETHOE Cyclic Resistance Ratio	+ Factor of Safety *	Liquefaction Analysis	Residual Shear Strength **	Seismic Porewater Pressure Ratio	Cumulative Seismic	Cyclic Lateral	5

Kramer, S. and Wang, C.H. (2015), "Empirical Model for Estimation of the Residual Strength of Liquefied Soil," Journal of Geotechnical and Geoenvironmental Engineering, ASCE 141 (9).
 Olson, S.M. and Johnson, C.I. (2008), "Analyzing Liquefactuation-Induced Lateral Spreads Using Strength Ratios," Journal of Geotechnical and Geoenvironmental Engineering, ASCE 134 (8), 1035-1049.
 Pradel, D. (1998), "Procedure to Evaluate Earthquake-Induced Settlements in Dry Sanday Soils," Journal of Geotechnical Engineering, ASCE 124 (4), pp. 364-368.

10. Seed, R.B. and Harder, L.F. (1990), "SPT-based analysis of cyclic pore pressure generation and undrained residual strength, Proceedings Of Seed Memorial Symposium, Vancouver, B.C., 351-376.

11. Stewart, J.P and Whang, D.H. (2003), "Simplified procedure to estimate ground settlement from seismic compression in compacted soils," Proceedings Of Pacific Conference on Earthquake Engineering, Paper 046. 12. Tokimatsu, K. and Seed, H.B. (1987), "Evaluation of settlements in sands due to earthquake shaking," Journal of Geotechnical Engineering, ASCE 113 (GT8), 861-878.

I.2. Tokimatsu, K. and Seed, H.B. (1987). Evaluation of settlements in sands due to carinquake shaxing. Journal of Geodechnical Engineering, ASCE 115 (138), 801-878.
 I.3. Tokimatsu, K. and Aska, Y. (1998). "Effects of liquefaction-induced ground displacementson pile performance in the 1995 Hyogoken-Nambu Earthquake," Soils and Foundations, Special Issue, Japan Geotechnical Society, 163-177.
 I.4. Tonkin & Taylor (2013), "Liquefaction Tokenet ground displacementson pile performance in the 1995 Hyogoken-Nambu Earthquake," Soils and Foundations, Special Issue, Japan Geotechnical Society, 163-177.
 I.5. Toprak, S. and Holzer, T.L. (2003), "Liquefaction Tokenetial Index: Field Assessment," Journal of Geotechnical and Geoenvironmental Engineering, ASCE 129 (4), 315-322.
 I.6. Youd, T.L. (driss, I.M., et al. (2001), "Liquefaction resistance of soils: summary report from the 1996 NCEER/NSF Workshops", Journal of Geotechnical and Geoenvironmental Engineering, ASCE 127 (10), 817-833.
 Zhang, G. Robertson, P.K. and Brachman, R.W.I. (2004), "Estimating liquefaction-induced lateral displacement using the standard penetration test," Journal of Geotechnical and Geoenvironmental Engineering, ASCE 130 (8), 861-871.

SIMPLIFIED LIQUEFACTION HAZARDS ASSESSMENT USING STANDARD PENETRATION TEST (SPT) DATA

PROJECT INFORMATION	
Project Name	Dogwood Road Bridge Replacement over Central Main Canal
Project No.	226816-00103.02
Project Location	Imperial County, California
Analyzed By	Carlos Amante
Reviewed By	Sam Koohi

TOPOGRAPHIC SITE CONDITION	
Ground Slope, S	0.00 %
Free Face (L/H) Ratio	N/A

GROUNDWATER LEVEL DATA	
GWL Depth Measured During Test	5.00 feet
GWL Depth Used in Design	5.00 feet

BORING DATA	
Boring No.	B-2
Ground Surface Elevation	996.00 feet
Proposed Grade Elevation	996.00 feet
Borehole Diameter	6.00 inches
Hammer Weight	140.00 pounds
Hammer Drop	30.00 inches
Hammer Energy Efficiency Ratio, ER	82.00 %
Hammer Distance to Ground Surface	5.00 feet

SEISMIC DESIGN PARAMETERS	
Earthquake Moment Magnitude, M _w	6.70
Peak Ground Acceleration, A _{max}	0.65 g
Site to Seismic Source Distance, R	6.10 miles

Appendix F

ASFE Important Information about Your Geotechnical Engineering Report

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a civil engineer may not fulfill the needs of a constructor — a construction contractor — or even another civil engineer. Because each geotechnical- engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client. No one except you should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply this report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical-engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

Geotechnical Engineers Base Each Report on a Unique Set of Project-Specific Factors

Geotechnical engineers consider many unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk-management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical-engineering report that was:

- not prepared for you;
- not prepared for your project;
- not prepared for the specific site explored; or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical-engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a lightindustrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an

assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

Subsurface Conditions Can Change

A geotechnical-engineering report is based on conditions that existed at the time the geotechnical engineer performed the study. *Do not rely on a geotechnical-engineering report whose adequacy may have been affected by*: the passage of time; man-made events, such as construction on or adjacent to the site; or natural events, such as floods, droughts, earthquakes, or groundwater fluctuations. *Contact the geotechnical engineer before applying this report to determine if it is still reliable.* A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ — sometimes significantly — from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide geotechnical-construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the confirmation-dependent recommendations included in your report. *Confirmationdependent recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations *only* by observing actual subsurface conditions revealed during construction. *The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's confirmation-dependent recommendations if that engineer does not perform the geotechnical-construction observation required to confirm the recommendations' applicability.*

A Geotechnical-Engineering Report Is Subject to Misinterpretation

Other design-team members' misinterpretation of geotechnical-engineering reports has resulted in costly

problems. Confront that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Constructors can also misinterpret a geotechnical-engineering report. Confront that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing geotechnical construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical-engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make constructors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give constructors the complete geotechnical-engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise constructors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/ or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure constructors have sufficient time* to perform additional study. Only then might you be in a position to give constructors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and constructors fail to recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Environmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform an *environmental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold-prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, many mold- prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical- engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your GBC-Member Geotechnical Engineer for Additional Assistance

Membership in the Geotechnical Business Council of the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you GBC-Member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910
Telephone: 301/565-2733 Facsimile: 301/589-2017
e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2015 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, or its contents, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document as a complement to a geotechnical-engineering report. Any other firm, individual, or other entity that so uses this document without being a GBA member could be commiting negligent or intentional (fraudulent) misrepresentation.